General strain theory has accumulated a considerable amount of empirical support. Many of these assessments have tested the direct relationship that strain has on crime and delinquency. The research presented here examines the relationship between schools and delinquency within a general strain theory perspective. More specifically, this research examines how schools can not only act as a source of an individual's strain and subsequent delinquency but also be a source for mediating or coping with strain and minimizing delinquency. To test the relationship between schools and delinquency, data from the National Educational Longitudinal Survey (NELS:88) are analyzed in a model of general strain that specifies sources of school-based strain and sources of school-based mechanisms for controlling strain.
BackgroundEastern equine encephalitis virus (EEEV) is an alphavirus with a case fatality rate estimated to be as high as 75 % in humans and 90 % in horses. Surviving patients often have long-lasting and severe neurological sequelae. At present, there is no licensed vaccine or therapeutic for EEEV infection. This study completes the clinical and pathological analysis of mice infected with a North American strain of EEEV by three different routes: aerosol, intranasal, and subcutaneous. Such an understanding is imperative for use of the mouse model in vaccine and antiviral drug development.MethodsTwelve-week-old female BALB/c mice were infected with EEEV strain FL93-939 by the intranasal, aerosol, or subcutaneous route. Mice were euthanized 6 hpi through 8 dpi and tissues were harvested for histopathological and immunohistochemical analysis.ResultsViral antigen was detected in the olfactory bulb as early as 1–2 dpi in aerosol and intranasal infected mice. However, histologic lesions in the brain were evident about 24 hours earlier (3 dpi vs 4 dpi), and were more pronounced following aerosol infection relative to intranasal infection. Following subcutaneous infection, viral antigen was also detected in the olfactory bulb, though not as routinely or as early. Significant histologic lesions were not observed until 6 dpi.ConclusionThese pathologic studies suggest EEEV enters the brain through the olfactory system when mice are exposed via the intranasal and aerosol routes. In contrast, the histopathologic lesions were delayed in the subcutaneous group and it appears the virus may utilize both the vascular and olfactory routes to enter the brain when mice are exposed to EEEV subcutaneously.
Background: Eastern equine encephalitis virus (EEEV), an arbovirus, is an important human and veterinary pathogen belonging to one of seven antigenic complexes in the genus Alphavirus, family Togaviridae. EEEV is considered the most deadly of the mosquito-borne alphaviruses due to the high case fatality rate associated with clinical infections, reaching up to 75 % in humans and 90 % in horses. In patients that survive acute infection, neurologic sequelae are often devastating. Although natural infections are acquired by mosquito bite, EEEV is also highly infectious by aerosol. This fact, along with the relative ease of production and stability of this virus, has led it to being identified as a potential agent of bioterrorism.
Currently, there are no FDA-licensed vaccines or therapeutics for eastern equine encephalitis virus (EEEV) for human use. We recently developed several methods to inactivate CVEV1219, a chimeric live-attenuated eastern equine encephalitis virus (EEEV). Dosage and schedule studies were conducted to evaluate the immunogenicity and protective efficacy of three potential second-generation inactivated EEEV (iEEEV) vaccine candidates in mice: formalin-inactivated CVEV1219 (fCVEV1219), INA-inactivated CVEV1219 (iCVEV1219) and gamma-irradiated CVEV1219 (gCVEV1219). Both fCVEV1219 and gCVEV1219 provided partial to complete protection against an aerosol challenge when administered by different routes and schedules at various doses, while iCVEV1219 was unable to provide substantial protection against an aerosol challenge by any route, dose, or schedule tested. When evaluating antibody responses, neutralizing antibody, not virus specific IgG or IgA, was the best correlate of protection. The results of these studies suggest that both fCVEV1219 and gCVEV1219 should be evaluated further and considered for advancement as potential second-generation inactivated vaccine candidates for EEEV.
a b s t r a c tVenezuelan (VEEV), eastern, and western equine encephalitis viruses, members of the genus Alphavirus, are causative agents of debilitative and sometimes fatal encephalitis. Although human cases are rare, these viruses pose a threat to military personnel, and to public health, due to their potential use as bioweapons. Currently, there are no licensed therapeutics for treating alphavirus infections. To address this need, small-molecules with potential anti-alphavirus activity, provided by collaborators, are tested routinely in live alphavirus assays utilizing time-consuming virus yield-reduction assays. To expedite the screening/hit-confirmation process, a cell-based enzyme-linked immunosorbent assay (ELISA) was developed and validated for the measurement of VEEV infection. A signal-to-background ratio of >900, and a z-factor of >0.8 indicated the robustness of this assay. For validation, the cell-based ELISA was compared directly to results from virus yield reduction assays in a single dose screen of 21 compounds. Using stringent criteria for anti-VEEV activity there was 90% agreement between the two assays (compounds displaying either antiviral activity, or no effect, in both assays). A concurrent compound-induced cell toxicity assay effectively filtered out false-positive hits. The cell-based ELISA also reproduced successfully compound dose-response virus inhibition data observed using the virus yield reduction assay. With available antibodies, this assay can be adapted readily to other viruses of interest to the biodefense community. Additionally, it is cost-effective, rapid, and amenable to automation and scale-up. Therefore, this assay could expedite greatly screening efforts and the identification of effective anti-alphavirus inhibitors.Published by Elsevier B.V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.