Occupancy modelling is a common approach to assess species distribution patterns, while explicitly accounting for false absences in detection–nondetection data. Numerous extensions of the basic single‐species occupancy model exist to model multiple species, spatial autocorrelation and to integrate multiple data types. However, development of specialized and computationally efficient software to incorporate such extensions, especially for large datasets, is scarce or absent. We introduce the spOccupancy R package designed to fit single‐species and multi‐species spatially explicit occupancy models. We fit all models within a Bayesian framework using Pólya‐Gamma data augmentation, which results in fast and efficient inference. spOccupancy provides functionality for data integration of multiple single‐species detection–nondetection datasets via a joint likelihood framework. The package leverages Nearest Neighbour Gaussian Processes to account for spatial autocorrelation, which enables spatially explicit occupancy modelling for potentially massive datasets (e.g. 1,000s–100,000s of sites). spOccupancy provides user‐friendly functions for data simulation, model fitting, model validation (by posterior predictive checks), model comparison (using information criteria and k‐fold cross‐validation) and out‐of‐sample prediction. We illustrate the package's functionality via a vignette, simulated data analysis and two bird case studies. The spOccupancy package provides a user‐friendly platform to fit a variety of single and multi‐species occupancy models, making it straightforward to address detection biases and spatial autocorrelation in species distribution models even for large datasets.
The homeodomain transcription factors sine oculis homeobox 3 (Six3) and ventral anterior homeobox 1 (Vax1) are required for brain development. Their expression in specific brain areas is maintained in adulthood, where their functions are poorly understood. To identify the roles of Six3 and Vax1 in neurons, we conditionally deleted each gene using Synapsin cre , a promoter targeting maturing neurons, and generated
1. Monitoring wildlife abundance across space and time is an essential task to study their population dynamics and inform effective management. Acoustic recording units are a promising technology for efficiently monitoring bird populations and communities. While current acoustic data models provide information on the presence/absence of individual species, new approaches are needed to monitor population abundance, ideally across large spatio-temporal regions.2. We present an integrated modelling framework that combines high-quality but temporally sparse bird point count survey data with acoustic recordings. Our models account for imperfect detection in both data types and false positive errors in the acoustic data. Using simulations, we compare the accuracy and precision of abundance estimates using differing amounts of acoustic vocalizations obtained from a clustering algorithm, point count data, and a subset of manually validated acoustic vocalizations. We also use our modelling framework in a case study to estimate abundance of the Eastern Wood-Pewee (Contopus virens) in Vermont, USA.3. The simulation study reveals that combining acoustic and point count data via an integrated model improves accuracy and precision of abundance estimates compared with models informed by either acoustic or point count data alone. Improved estimates are obtained across a wide range of scenarios, with the largest gains occurring when detection probability for the point count data is low. Combining acoustic data with only a small number of point count surveys yields estimates of abundance without the need for validating any of the identified vocalizations from the acoustic data. Within our case study, the integrated models provided moderate support for a decline of the Eastern Wood-Pewee in this region. 4. Our integrated modelling approach combines dense acoustic data with few point count surveys to deliver reliable estimates of species abundance without the need for manual identification of acoustic vocalizations or a prohibitively expensive large number of repeated point count surveys. Our proposed approach offers an efficient monitoring alternative for large spatio-temporal regions when point count data are difficult to obtain or when monitoring is focused on rare species with low detection probability. | 1041Methods in Ecology and Evoluঞon DOSER Et al.
1. The occurrence and distributions of wildlife populations and communities are shifting as a result of global changes. To evaluate whether these shifts are negatively impacting biodiversity processes, it is critical to monitor the status, trends and effects of environmental variables on entire communities. However, modelling the dynamics of multiple species simultaneously can require large amounts of diverse data, and few modelling approaches exist to simultaneously provide species and community-level inferences.2. We present an 'integrated community occupancy model' (ICOM) that unites principles of data integration and hierarchical community modelling in a single framework to provide inferences on species-specific and community occurrence dynamics using multiple data sources. The ICOM combines replicated and nonreplicated detectionnondetection data sources using a hierarchical framework that explicitly accounts for different detection and sampling processes across data sources. We use simulations to compare the ICOM to previously developed hierarchical community occupancy models and single species integrated distribution models. We then apply our model to assess the occurrence and biodiversity dynamics of foliage-gleaning birds in the White Mountain National Forest in the northeastern USA from 2010 to 2018 using three independent data sources.3. Simulations reveal that integrating multiple data sources in the ICOM increased precision and accuracy of species and community-level inferences compared to single data source models, although benefits of integration were dependent on the information content of individual data sources (e.g. amount of replication). Compared to single species models, the ICOM yielded more precise species-level estimates. Within our case study, the ICOM had the highest out-of-sample predictive performance compared to single species models and models that used only a subset of the three data sources.4. The ICOM provides more precise estimates of occurrence dynamics compared to multi-species models using single data sources or integrated single-species models.We further found that the ICOM had improved predictive performance across a broad region of interest with an empirical case study of forest birds. The ICOM offers an
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.