The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 um and active delay lines with a range of +/- 38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi
The need for high dynamic range imaging is crucial in many astronomical elds, such as extra-solar planet direct detection, extra-galactic science and circumstellar imaging. Using a high quality coronograph, dynamic ranges of up to 10 5 have been achieved. However the ultimate limitations of coronographs do not come from their optical performances, but from scattering due to imperfections in the optical surfaces of the collecting system. We propose to use a deformable mirror to correct these imperfections and decrease the scattering level in local regions called \dark holes". Using this technique will enable imaging of elds with dynamic ranges exceeding 10 8 . We show that the dark-hole algorithm results in a lower scattering level than simply minimizing the RMS gure error (maximum-strehl-ratio algorithm). The achievable scattering level inside the dark-hole region will depend on the number of mirror actuators, the surface quality of the telescope, the single-actuator in uence function and the observing wavelength. We have simulated cases with a 37 37 deformable mirror using data from the Hubble Space Telescope optics without spherical aberrations and have demonstrated dark holes with rectangular and annular shapes. We also present a preliminary concept of a monolithic, fully integrated, high density deformable mirror which can be used for this type of space application.
Serp-1 is a secreted myxoma viral serine protease inhibitor (serpin) with proven, highly effective, anti-inflammatory defensive activity during host cell infection, as well as potent immunomodulatory activity in a wide range of animal disease models. Serp-1 binds urokinase-type plasminogen activator (uPA) and the tissue-type PA, plasmin, and factor Xa, requiring uPA receptor (uPAR) for anti-inflammatory activity. To define Serp-1-mediated effects on inflammatory cell activation, we examined the association of Serp-1 with monocytes and T cells, effects on cellular migration, and the role of uPAR-linked integrins and actin-binding proteins in Serp-1 cellular responses. Our results show that Serp-1 associates directly with activated monocytes and T lymphocytes, in part through interaction with uPAR (P<0.001). Serp-1, but not mammalian serpin PA inhibitor-1 (PAI-1), attenuated cellular adhesion to the extracellular matrix. Serp-1 and PAI-1 reduced human monocyte and T cell adhesion (P<0.001) and migration across endothelial monolayers in vitro (P<0.001) and into mouse ascites in vivo (P<0.001). Serp-1 and an inactive Serp-1 mutant Serp-1(SAA) bound equally to human monocytes and T cells, but a highly proinflammatory mutant, Serp-1(Ala(6)), bound less well to monocytes. Serp-1 treatment of monocytes increased expression of filamin B actin-binding protein and reduced CD18 (beta-integrin) expression (P<0.001) in a uPAR-dependent response. Filamin colocalized and co-immunoprecipitated with uPAR, and short interference RNA knock-down of filamin blocked Serp-1 inhibition of monocyte adhesion. We report here that the highly potent, anti-inflammatory activity of Serp-1 is mediated through modification of uPAR-linked beta-integrin and filamin in monocytes, identifying this interaction as a central regulatory axis for inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.