Chirally stacked N -layer graphene systems with N ≥ 2 exhibit a variety of distinct broken symmetry states in which charge density contributions from different spins and valleys are spontaneously transferred between layers. We explain how these states are distinguished by their charge, spin, and
Bilayer graphene is an attractive platform for studying new two-dimensional electron physics, because its flat energy bands are sensitive to out-of-plane electric fields and these bands magnify electron-electron interaction effects. Theory predicts a variety of interesting broken symmetry states when the electron density is at the carrier neutrality point, and some of these states are characterized by spontaneous mass gaps, which lead to insulating behaviour. These proposed gaps are analogous to the masses generated by broken symmetries in particle physics, and they give rise to large Berry phase effects accompanied by spontaneous quantum Hall effects. Although recent experiments have provided evidence for strong electronic correlations near the charge neutrality point, the presence of gaps remains controversial. Here, we report transport measurements in ultraclean double-gated bilayer graphene and use source-drain bias as a spectroscopic tool to resolve a gap of ∼2 meV at the charge neutrality point. The gap can be closed by a perpendicular electric field of strength ∼15 mV nm(-1), but it increases monotonically with magnetic field, with an apparent particle-hole asymmetry above the gap. These data represent the first spectroscopic mapping of the ground states in bilayer graphene in the presence of both electric and magnetic fields.
Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.