In sponsored search it is critical to match ads that are relevant to a query and to accurately predict their likelihood of being clicked. Commercial search engines typically use machine learning models for both query-ad relevance matching and click-through-rate (CTR) prediction. However, matching models are based on the similarity between a query and an ad, ignoring the fact that a retrieved ad may not attract clicks, while click models rely on click history, being of limited use for new queries and ads. We propose a deeply supervised architecture that jointly learns the semantic embeddings of a query and an ad as well as their corresponding CTR. We also propose a novel cohort negative sampling technique for learning implicit negative signals. We trained the proposed architecture using one billion query-ad pairs from a major commercial web search engine. This architecture improves the best-performing baseline deep neural architectures by 2% of AUC for CTR prediction and by statistically significant 0.5% of NDCG for query-ad matching.
Objective
Clinical trials, prospective research studies on human participants carried out by a distributed team of clinical investigators, play a crucial role in the development of new treatments in health care. This is a complex and expensive process where investigators aim to enroll volunteers with predetermined characteristics, administer treatment(s), and collect safety and efficacy data. Therefore, choosing top-enrolling investigators is essential for efficient clinical trial execution and is 1 of the primary drivers of drug development cost.
Materials and Methods
To facilitate clinical trials optimization, we propose DeepMatch (DM), a novel approach that builds on top of advances in deep learning. DM is designed to learn from both investigator and trial-related heterogeneous data sources and rank investigators based on their expected enrollment performance on new clinical trials.
Results
Large-scale evaluation conducted on 2618 studies provides evidence that the proposed ranking-based framework improves the current state-of-the-art by up to 19% on ranking investigators and up to 10% on detecting top/bottom performers when recruiting investigators for new clinical trials.
Discussion
The extensive experimental section suggests that DM can provide substantial improvement over current industry standards in several regards: (1) the enrollment potential of the investigator list, (2) the time it takes to generate the list, and (3) data-informed decisions about new investigators.
Conclusion
Due to the great significance of the problem at hand, related research efforts are set to shift the paradigm of how investigators are chosen for clinical trials, thereby optimizing and automating them and reducing the cost of new therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.