Abstract. We propose intersection type assignment systems for two resource control term calculi: the lambda calculus and the sequent lambda calculus with explicit operators for weakening and contraction. These resource control calculi, λ and λ Gtz , respectively, capture the computational content of intuitionistic natural deduction and intuitionistic sequent logic with explicit structural rules. Our main contribution is the characterisation of strong normalisation of reductions in both calculi. We first prove that typability implies strong normalisation in λ by adapting the reducibility method. Then we prove that typability implies strong normalisation in λ Gtz by using a combination of well-orders and a suitable embedding of λ Gtz -terms into λ -terms which preserves types and enables the simulation of all its reductions by the operational semantics of the λ -calculus. Finally, we prove that strong normalisation implies typability in both systems using head subject expansion.
This paper gives a characterisation, via intersection types, of the strongly normalising proof-terms of an intuitionistic sequent calculus (where LJ easily embeds). The soundness of the typing system is reduced to that of a well known typing system with intersection types for the ordinary λ-calculus. The completeness of the typing system is obtained from subject expansion at root position. Next we use our result to analyze the characterisation of strong normalisability for three classes of intuitionistic terms: ordinary λ-terms, ΛJ-terms (λ-terms with generalised application), and λx-terms (λ-terms with explicit substitution). We explain via our system why the type systems in the natural deduction format for ΛJ and λx known from the literature contain extra, exceptional rules for typing generalised application or substitution; and we show a new characterisation of the β-strongly normalising λ-terms, as a corollary to a PSN-result, relating the λ-calculus and the intuitionistic sequent calculus. Finally, we obtain variants of our characterisation by restricting the set of assignable types to sub-classes of intersection types, notably strict types. In addition, the known characterisation of the β-strongly normalising λ-terms in terms of assignment of strict types follows as an easy corollary of our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.