Background: Multiple sclerosis (MS) mostly affects young and middle-aged adults and is known to be associated with a host of factors involved in overall quality of life and well-being. The biopsychosocial model of disease takes into account the multifaceted nature of chronic illness and is commonly applied to MS. The present investigation examined the effectiveness of a 10-week psychoeducational MS wellness program that was developed on the basis of the biopsychosocial model and a wellness approach to treatment.
Diffusion tensor imaging (DTI) is one of the most powerful magnetic resonance imaging (MRI) techniques developed in the twentieth century. In spite of the fact that DTI has been in use for more than two decades, it is still hard to find publications that simplify mathematics behind DTI for DTI users without extensive mathematical background. We believe that this may prevent some researchers from using DTI technique to its fullest extent. To the best of our knowledge, there are no published reviews which have tried to clarify the methods of DTI measurement and analysis. In this article, we attempted to explain the mathematics of DTI in simple terms with the goal of providing DTI users, with a better understanding of this technique and its usage. In addition, we have also described the DTI processing steps and explained the reasons behind each step.
The present study utilized functional near infrared spectroscopy (fNIRS) to detect neural activation differences in the orbitofrontal brain region between individuals with multiple sclerosis (MS) and healthy controls (HCs) during a working memory (WM) task. Thirteen individuals with MS and 12 HCs underwent fNIRS recording while performing the n-back WM task with four levels of difficulty (0-, 1-, 2-, and 3-back). Subjects were fitted with the fNIRS cap consisting of 30 'optodes' positioned over the forehead. The results revealed different patterns of brain activation in MS and HCs. The MS group showed an increase in brain activation, as measured by the concentration of oxygenated hemoglobin (oxyHb), in the left superior frontal gyrus (LSFG) at lower task difficulty levels (i.e. 1-back), followed by a decrease at higher task difficulty (2- and 3-back) as compared with the HC group. HC group achieved higher accuracy than the MS group on the lower task loads (i.e. 0- and 1-back), however there were no performance differences between the groups at the higher task loads (i.e. 2- and 3-back). Taken together, the results suggest that individuals with MS experience a task with the lower cognitive load as more difficult than the HC group, and the brain activation patterns observed during the task confirm some of the previous findings from functional magnetic resonance imaging (fMRI) studies. This study is the first to investigate brain activation by utilizing the method of fNIRS in MS during the performance of a cognitive task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.