Summary NF-κB (nuclear factor κB) signaling is considered critical for single positive (SP) thymocyte development because loss of upstream activators of NF-κB, such as the IKK complex, arrests their development. We found that the compound ablation of RelA, cRel, and p50, required for canonical NF-κB transcription, had no impact upon thymocyte development. While IKK-deficient thymocytes were acutely sensitive to tumor necrosis factor (TNF)-induced cell death, Rel-deficient cells remained resistant, calling into question the importance of NF-κB as the IKK target required for thymocyte survival. Instead, we found that IKK controlled thymocyte survival by repressing cell-death-inducing activity of the serine/threonine kinase RIPK1. We observed that RIPK1 expression was induced during development of SP thymocytes and that IKK was required to prevent RIPK1-kinase-dependent death of SPs in vivo . Finally, we showed that IKK was required to protect Rel-deficient thymocytes from RIPK1-dependent cell death, underscoring the NF-κB-independent function of IKK during thymic development.
The most common cause of death in the intensive care unit (ICU) is the development of multiorgan dysfunction syndrome (MODS). Besides life-supporting treatments, no cure exists, and its mechanisms are still poorly understood. Catalytic iron is associated with ICU mortality and is known to cause free radical-mediated cellular toxicity. It is thought to induce excessive lipid peroxidation, the main characteristic of an iron-dependent type of cell death conceptualized as ferroptosis. Here we show that the severity of multiorgan dysfunction and the probability of death are indeed associated with plasma catalytic iron and lipid peroxidation. Transgenic approaches underscore the role of ferroptosis in iron-induced multiorgan dysfunction. Blocking lipid peroxidation with our highly soluble ferrostatin-analogue protects mice from injury and death in experimental non-septic multiorgan dysfunction, but not in sepsis-induced multiorgan dysfunction. The limitations of the experimental mice models to mimic the complexity of clinical MODS warrant further preclinical testing. In conclusion, our data suggest ferroptosis targeting as possible treatment option for a stratifiable subset of MODS patients.
Currently, there is mounting evidence that intermolecular receptor-receptor interactions may result in altered receptor recognition, pharmacology and signaling. Heterobivalent ligands have been proven useful as molecular probes for confirming and targeting heteromeric receptors. This report describes the design and synthesis of novel heterobivalent ligands for dopamine D -like receptors (D -likeR) and the μ-opioid receptor (μOR) and their evaluation using ligand binding and functional assays. Interestingly, we identified a potent bivalent ligand that contains a short 18-atom linker and combines good potency with high efficacy both in β-arrestin 2 recruitment for μOR and MAPK-P for D R. Furthermore, this compound was characterized by a biphasic competition binding curve for the D R-μOR heterodimer, indicative of a bivalent binding mode. As this compound possibly bridges the D R-μOR heterodimer, it could be used as a pharmacological tool to further investigate the interactions of D R and μOR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.