Regulation of cell survival is a key part of the pathogenesis of multiple myeloma (MM). JNK signaling has been implicated in MM pathogenesis, but its function is unclear. To elucidate the role of JNK in MM, we evaluated the specific functions of the two major JNK proteins, JNK1 and JNK2. We show here that JNK2 is constitutively activated in a panel of MM cell lines and primary tumors. Using loss-of-function studies, we demonstrate that JNK2 is required for the survival of myeloma cells and constitutively suppresses JNK1-mediated apoptosis by affecting expression of poly(ADP-ribose) polymerase (PARP)14, a key regulator of B-cell survival.Strikingly, we found that PARP14 is highly expressed in myeloma plasma cells and associated with disease progression and poor survival. Overexpression of PARP14 completely rescued myeloma cells from apoptosis induced by JNK2 knockdown, indicating that PARP14 is critically involved in JNK2-dependent survival. Mechanistically, PARP14 was found to promote the survival of myeloma cells by binding and inhibiting JNK1. Moreover, inhibition of PARP14 enhances the sensitization of MM cells to anti-myeloma agents. Our findings reveal a novel regulatory pathway in myeloma cells through which JNK2 signals cell survival via PARP14, and identify PARP14 as a potential therapeutic target in myeloma.
Summary
NF-κB (nuclear factor κB) signaling is considered critical for single positive (SP) thymocyte development because loss of upstream activators of NF-κB, such as the IKK complex, arrests their development. We found that the compound ablation of RelA, cRel, and p50, required for canonical NF-κB transcription, had no impact upon thymocyte development. While IKK-deficient thymocytes were acutely sensitive to tumor necrosis factor (TNF)-induced cell death, Rel-deficient cells remained resistant, calling into question the importance of NF-κB as the IKK target required for thymocyte survival. Instead, we found that IKK controlled thymocyte survival by repressing cell-death-inducing activity of the serine/threonine kinase RIPK1. We observed that RIPK1 expression was induced during development of SP thymocytes and that IKK was required to prevent RIPK1-kinase-dependent death of SPs
in vivo
. Finally, we showed that IKK was required to protect Rel-deficient thymocytes from RIPK1-dependent cell death, underscoring the NF-κB-independent function of IKK during thymic development.
Notch3 overexpression has been previously shown to positively regulate the generation and function of naturally occurring regulatory T cells and the expression of Foxp3, in cooperation with the pTα/pre-TCR pathway. In this study, we show that Notch3 triggers the trans activation of Foxp3 promoter depending on the T cell developmental stage. Moreover, we discovered a novel CSL/NF-κB overlapping binding site within the Foxp3 promoter, and we demonstrate that the activation of NF-κB, mainly represented by p65-dependent canonical pathway, plays a positive role in Notch3-dependent regulation of Foxp3 transcription. Accordingly, the deletion of protein kinase Cθ, which mediates canonical NF-κB activation, markedly reduces regulatory T cell number and per cell Foxp3 expression in transgenic mice with a constitutive activation of Notch3 signaling. Collectively, our data indicate that the cooperation among Notch3, protein kinase Cθ, and p65/NF-κB subunit modulates Foxp3 expression, adding new insights in the understanding of the molecular mechanisms involved in regulatory T cell homeostasis and function.
Aspirin is a substrate for MRP4 and can be extruded from platelet through its transportation. Aspirin effect on COX-1 is little-related to MRP4-mediated aspirin transport in HV, but in CABG patients with MRP4 over-expression, its pharmacological inhibition enhances aspirin action in an efficient way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.