Abstract. In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit a priori estimation is obtained.Mathematics Subject Classification. 65M12, 65M15, 65M55.
We consider the Cauchy problem for a second-order nonlinear evolution equation in a Hilbert space. This equation represents the abstract generalization of the Ball integro-differential equation. The general nonlinear case with respect to terms of the equation which include a square of a norm of a gradient is considered. A three-layer semi-discrete scheme is proposed in order to find an approximate solution. In this scheme, the approximation of nonlinear terms that are dependent on the gradient is carried out by using an integral mean. We show that the solution of the nonlinear discrete problem and its corresponding difference analogue of a first-order derivative is uniformly bounded. For the solution of the corresponding linear discrete problem, it is obtained high-order a priori estimates by using two-variable Chebyshev polynomials. Based on these estimates we prove the stability of the nonlinear discrete problem. For smooth solutions, we provide error estimates for the approximate solution. An iteration method is applied in order to find an approximate solution for each temporal step. The convergence of the iteration process is proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.