Nonlinear dynamics of Rossby-Khantadze electromagnetic planetary waves in the weakly ionized ionospheric E-layer is investigated. Along with the prevalent effect of Hall conductivity for these waves, the latitudinal inhomogeneity of both the Earth's angular velocity and the geomagnetic field becomes essential. It is shown that such short wavelength turbulence of Rossby-Khantadze waves is unstable with respect to the excitation of low-frequency and large-scale perturbations of the zonal flow and magnetic field. The nonlinear mechanism of the instability is driven by the advection of vorticity, leading to the inverse energy cascade toward the longer wavelength. The growth rate of the corresponding instability is found. It is shown that the generation of the intense mean magnetic field is caused by the latitudinal gradient of the geomagnetic field.
It is shown that in the earth's conductive ionospheric E-region, large-scale ultra low-frequency Rossby and Khantadze electromagnetic waves can propagate. Along with the prevalent effect of Hall conductivity for these waves, the latitudinal inhomogeneity of both the earth's angular velocity and the geomagnetic field becomes essential. Action of these effects leads to the coupled propagation of electromagnetic Rossby and Khantadze modes. Linear propagation properties of these waves are given in detail. It is shown that the waves lose the dispersing property for large values of wave numbers. Corresponding nonlinear solitary vortical structures are constructed. Conditions for such self-organization are given. It is shown that nonlinear large-scale vortices generate the stronger pulses of the geomagnetic field than the corresponding linear waves. Previous investigations are revised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.