Summary Background We previously identified a functional variant in a let-7 microRNA (miRNA) complementary site in the 3′-untranslated region of the KRAS oncogene (rs61764370) which is associated with cancer. We aimed to investigate the association of this KRAS variant with breast cancer and tumour biology. Methods We assessed frequency distributions of the KRAS variant in 415 patients with histologically confirmed breast cancer and 457 controls from Connecticut, USA (study group 1) and association of this variant with breast-cancer subtypes in 690 Irish women with known oestrogen receptor (ER), progesterone receptor (PR), and HER2 statuses, and 360 controls (study group 2). We pooled data for study groups 1 and 2 with a cohort of 140 women with triple-negative breast cancer and 113 controls to assess the association of the KRAS variant with triple-negative breast cancer risk, and genome-wide mRNA and specific miRNA expression in patients with triple-negative breast cancer. Findings Although frequency distributions of the KRAS variant in study group 1 did not differ between all genotyped individuals, eight (33%) of 24 premenopausal women with ER/PR-negative cancer had the KRAS variant, compared with 27 (13%) of 201 premenopausal controls (p=0·015). In study group 2, the KRAS variant was significantly enriched in women with triple-negative breast cancer (19 [21%] of 90 cases) compared with 64 (13%) of 478 for luminal A, 13 (15%) of 87 for luminal B, and two (6%) of 35 for HER2-positive subgroups (p=0·044). Multivariate analysis in the pooled study groups showed that the KRAS variant was associated with triple-negative breast cancer in premenopausal women (odds ratio 2·307, 95% CI 1·261–4·219, p=0·0067). Gene-expression analysis of triple-negative breast-cancer tumours suggested that KRAS-variant positive tumours have significantly altered gene expression, and are enriched for the luminal progenitor and BRCA1 deficiency signatures. miRNA analysis suggested reduced levels of let-7 miRNA species in KRAS-variant tumours. Interpretation The KRAS variant might be a genetic marker for development of triple-negative breast cancer in premenopausal women, and altered gene and miRNA expression signatures should enable molecular and biological stratification of patients with this subgroup of breast cancer. Funding US National Institutes of Health.
PurposeA germline microRNA binding site-disrupting variant, the KRAS-variant (rs61764370), is associated with an increased risk of developing several cancers. Because this variant is most strongly associated with ovarian cancer risk in patients from hereditary breast and ovarian families (HBOC), and with the risk of premenopausal triple negative breast cancer, we evaluated the association of the KRAS-variant with women with personal histories of both breast and ovarian cancer, referred to as double primary patients.Experimental DesignGermline DNA from double primary patients was tested for the KRAS-variant (n = 232). Confirmation of pathologic diagnoses, age of diagnoses, interval between ovarian cancer diagnosis and sample collection, additional cancer diagnoses, and family history were obtained when available. All patients were tested for deleterious BRCA mutations.ResultsThe KRAS-variant was significantly enriched in uninformative (BRCA negative) double primary patients, being found in 39% of patients accrued within two years of their ovarian cancer diagnosis. Furthermore, the KRAS-variant was found in 35% of uninformative double primary patients diagnosed with ovarian cancer post-menopausally, and was significantly associated with uninformative double primary patients with a positive family history. The KRAS-variant was also significantly enriched in uninformative patients who developed more then two primary cancers, being found in 48% of women with two breast primaries plus ovarian cancer or with triple primary cancers.ConclusionsThese findings further validate the importance of the KRAS-variant in breast and ovarian cancer risk, and support the association of this variant as a genetic marker for HBOC families previously considered uninformative.
BackgroundA germline, variant in the BRCA1 3’UTR (rs8176318) was previously shown to predict breast and ovarian cancer risk in women from high-risk families, as well as increased risk of triple negative breast cancer. Here, we tested the hypothesis that this variant predicts tumor biology, like other 3’UTR mutations in cancer.MethodsThe impact of the BRCA1-3’UTR-variant on BRCA1 gene expression, and altered response to external stimuli was tested in vitro using a luciferase reporter assay. Gene expression was further tested in vivo by immunoflourescence staining on breast tumor tissue, comparing triple negative patient samples with the variant (TG or TT) or non-variant (GG) BRCA1 3’UTR. To determine the significance of the variant on clinically relevant endpoints, a comprehensive collection of West-Irish breast cancer patients were tested for the variant. Finally, an association of the variant with breast screening clinical phenotypes was evaluated using a cohort of women from the High Risk Breast Program at the University of Vermont.ResultsLuciferase reporters with the BRCA1-3’UTR-variant (T allele) displayed significantly lower gene expression, as well as altered response to external hormonal stimuli, compared to the non-variant 3’UTR (G allele) in breast cancer cell lines. This was confirmed clinically by the finding of reduced BRCA1 gene expression in triple negative samples from patients carrying the homozygous TT variant, compared to non-variant patients. The BRCA1-3’UTR-variant (TG or TT) also associated with a modest increased risk for developing breast cancer in the West-Irish cohort (OR = 1.4, 95% CI 1.1-1.8, p = 0.033). More importantly, patients with the BRCA1-3’UTR-variant had a 4-fold increased risk of presenting with Stage IV disease (p = 0.018, OR = 3.37, 95% CI 1.3-11.0). Supporting that this finding is due to tumor biology, and not difficulty screening, obese women with the BRCA1-3’UTR-variant had significantly less dense breasts (p = 0.0398) in the Vermont cohort.ConclusionA variant in the 3’UTR of BRCA1 is functional, leading to decreased BRCA1 expression, modest increased breast cancer risk, and most importantly, presentation with stage IV breast cancer, likely due to aggressive tumor biology.
The latissimus dorsi (LD) flap has classically been described for posterior upper quadrant trunk defects. Perforator flaps have gained popularity among reconstructive surgeons as the predictable anatomy and muscle-sparing nature of parascapular flaps make this an attractive reconstructive option. We describe the versatility of the parascapular flap for reconstruction of defects in the axilla, deltoid, scapula and paraspinal region performed in six patients over a two-year period. The history of the parascapular flap, technique, patient outcomes and technical pearls are also discussed. We recommend this flap be considered a workhorse flap for defects in the posterior upper quadrant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.