This paper documents a continuous ∼ 44,000-yr pollen record derived from the Mfabeni Peatland on the Maputaland Coastal Plain. A detailed fossil pollen analysis indicates the existence of extensive Podocarpus-abundant coastal forests before ∼ 33,000 cal yr BP. The onset of wetter local conditions after this time is inferred from forest retreat and the development of swampy conditions. Conditions during the last glacial maximum (∼ 21,000 cal yr BP) are inferred to have been colder and drier than the present, as evidenced by forest retreat and replacement of swampy reed/sedge communities by dry grassland. Forest growth and expansion during the Holocene Altithermal (∼ 8000–6000 cal yr BP) indicates warm, relatively moist conditions. Previous records from Maputaland have suggested a northward migration of Podocarpus forest during the late Holocene. However, we interpret a mid-Holocene decline in Podocarpus at Mfabeni as evidence of deforestation. Forest clearance during the mid-Holocene is supported by the appearance of Morella serrata, suggesting a shift towards more open grassland/savanna, possibly due to burning. These signals of human impact are coupled with an increase in Acacia, indicative of the development of secondary forest and hence disturbance.
Abstract. A new global synthesis and biomization of long (> 40 kyr) pollen-data records is presented and used with simulations from the HadCM3 and FAMOUS climate models and the BIOME4 vegetation model to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Simulated biome distributions using BIOME4 driven by HadCM3 and FAMOUS at the global scale over time generally agree well with those inferred from pollen data. Global average areas of grassland and dry shrubland, desert, and tundra biomes show large-scale increases during the Last Glacial Maximum, between ca. 64 and 74 ka BP and cool substages of Marine Isotope Stage 5, at the expense of the tropical forest, warm-temperate forest, and temperate forest biomes. These changes are reflected in BIOME4 simulations of global net primary productivity, showing good agreement between the two models. Such changes are likely to affect terrestrial carbon storage, which in turn influences the stable carbon isotopic composition of seawater as terrestrial carbon is depleted in 13C.
Late Quaternary vegetation history and environmental changes in a biodiverse tropical ecosystem are inferred from pollen, charcoal and carbon isotope evidence derived from a ∼ 48,000-yr sedimentary record from the Uluguru Mountains, a component of the Eastern Arc Mountains of Kenya and Tanzania. Results indicate that Eastern Arc forest composition has remained relatively stable during the past ∼ 48,000 yr. Long-term environmental stability of the Eastern Arc forests has been proposed as a mechanism for the accumulation and persistence of species during glacial periods, thus resulting in the diverse forests observed today. The pollen and isotope data presented here indicate some marked changes in abundance but no significant loss in moist forest taxa through the last glacial maximum, thereby providing support for the long-term environmental stability of the Eastern Arc. Anthropogenic activities, including burning and forest clearance, were found to play a moderate role in shaping the mosaic of forest patches and high-altitude grasslands that characterise the site today; however, this influence was tempered by the inaccessibility of the mountain.
Lake St Lucia, the largest estuarine system in Africa, is enclosed by a 120 m-high compound Quaternary barrier-dune system in northern KwaZulu-Natal, South Africa. It comprises several discrete sedimentary basins within a single shallow back-barrier water body. This paper reports the first very-high-resolution seismic study of the system. Seven seismic units (A-G) are identified and interpreted based on their geometry, acoustic properties and a sediment coring programme. The units are bounded by regionally developed sequence boundaries and lower order unconformity surfaces corresponding to bay and tidal ravinement and hiatus surfaces. The lowermost subaerial unconformity formed during regression related to late-Pliocene hinterland uplift. Initial infilling of this surface in the proximal areas reflects estuarine sedimentation in a mixed wave-and tide-dominated system during the subsequent
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.