Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-todate lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
Guanine-rich sequences in nucleic acids can fold into G quadruplexes, in which four guanines on a single strand combine to form G-tetrad planes stabilized by metallic ions. Sequence motifs which are predicted to form a G quadruplex are found throughout the genome and are believed to regulate a variety of biological processes. Detailed knowledge of the kinetics of G-quadruplex folding and unfolding would provide critical insight into these processes. To probe its structural stability, we used optical tweezers to disrupt single molecules of a single-stranded DNA G4 quadruplex. Dynamic force spectroscopy was employed, in which the distribution of rupture forces was measured for different loading rates and used to infer the nature of the transition state barrier for unfolding of the structure. The distance and height of the energy barriers were extracted for two observed conformations. The energy barrier was found to be close to the folded conformation, resulting in a high disruption force despite the relatively low energy barrier height.
Osteoarthritis (OA) is a common joint disorder with increasing impact in an aging society. While genetic and transcriptomic analyses have revealed some genes and non-coding loci associated to OA, the pathogenesis remains incompletely understood. Chromatin profiling, which provides insight into gene regulation, has not been reported in OA mainly due to technical difficulties. Here, we employed Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) to map the accessible chromatin landscape in articular knee cartilage of OA patients. We identified 109,215 accessible chromatin regions for cartilages, of which 71% were annotated as enhancers. By overlaying them with genetic and DNA methylation data, we have determined potential OA-relevant enhancers and their putative target genes. Furthermore, through integration with RNA-seq data, we characterized genes that are altered both at epigenomic and transcriptomic levels in OA. These genes are enriched in pathways regulating ossification and mesenchymal stem cell (MSC) differentiation. Consistently, the differentially accessible regions in OA are enriched for MSC-specific enhancers and motifs of transcription factor families involved in osteoblast differentiation. In conclusion, we demonstrate how direct chromatin profiling of clinical tissues can provide comprehensive epigenetic information for a disease and suggest candidate genes and enhancers of translational potential.
Mesenchymal-to-epithelial transition (MET) is an important step in cell reprogramming from fibroblasts (a cell type frequently used for this purpose) to various epithelial cell types. However, the mechanism underlying MET induction in fibroblasts remains to be understood. The present study aimed to identify the transcription factors (TFs) that efficiently induce MET in dermal fibroblasts. OVOL2 was identified as a potent inducer of key epithelial genes, and OVOL2 cooperatively enhanced MET induced by HNF1A, TP63, and KLF4, which are known reprogramming TFs to epithelial lineages. In TP63/KLF4-induced keratinocyte-like cell-state reprogramming, OVOL2 greatly facilitated the activation of epithelial and keratinocyte-specific genes. This was accompanied by enhanced changes in chromatin accessibility across the genome. Mechanistically, motif enrichment analysis revealed that the target loci of KLF4 and TP63 become accessible upon induction of TFs, whereas the OVOL2 target loci become inaccessible. This indicates that KLF4 and TP63 positively regulate keratinocyte-associated genes whereas OVOL2 suppresses fibroblast-associated genes. The exogenous expression of OVOL2 therefore disrupts fibroblast lineage identity and facilitates fibroblast cell reprogramming into epithelial lineages cooperatively with tissue-specific reprogramming factors. Identification of OVOL2 as an MET inducer and an epithelial reprogramming enhancer in fibroblasts provides new insights into cellular reprogramming improvement for future applications.
Secondary or tertiary structure in an mRNA, such as a pseudoknot, can create a physical barrier that requires the ribosome to generate additional force to translocate. The presence of such a barrier can dramatically increase the probability that the ribosome will shift into an alternate reading frame, in which a different set of codons is recognized. The detailed biophysical mechanism by which frameshifting is induced remains unknown. Here we employ optical trapping techniques to investigate the structure of a -1 programmed ribosomal frameshift (-1 PRF) sequence element located in the CCR5 mRNA, which encodes a coreceptor for HIV-1 and is, to our knowledge, the first known human -1 PRF signal of nonviral origin. We begin by presenting a set of computationally predicted structures that include pseudoknots. We then employ what we believe to be new analytical techniques for measuring the effective free energy landscapes of biomolecules. We find that the -1 PRF element manifests several distinct unfolding pathways when subject to end-to-end force, one of which is consistent with a proposed pseudoknot conformation, and another of which we have identified as a folding intermediate. The dynamic ensemble of conformations that CCR5 mRNA exhibits in the single-molecule experiments may be a significant feature of the frameshifting mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.