Sol–gel derived n-type Zn(1-x)Mg
x
O (x=0–0.45) thin films and thin-film transistors (TFTs) with active channel layers made of the films were investigated. The films were prepared at 500°C. The effects of Mg doping on the crystallinity, optical transparency, grain size, and charge-carrier concentration (n) of the films were examined. The Fermi level of the films, as derived from the temperature dependence of n, was ∼0.12 eV below the conduction band. The donor concentration and donor level (E
d) were derived by a curve fitting method based on the electrical neutrality condition. E
d was found to be ∼0.3 eV below the conduction band. The composition dependence of the TFT output characteristics was interpreted and correlated to the width of the depletion region adjacent to the grain boundaries. When the grains were almost depleted at x=0.2, the TFT showed an enhancement mode and an on/off ratio of 106.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.