We demonstrate effective inactivation of oral cancer cells SAS through a combination of photothermal therapy (PTT) and photodynamic therapy (PDT) effects based on localized surface plasmon resonance (LSPR) around 1064 nm in wavelength of a Au nanoring (NRI) under femtosecond (fs) laser illumination. The PTT effect is caused by the LSPR-enhanced absorption of the Au NRI. The PDT effect is generated by linking the Au NRI with the photosensitizer of sulfonated aluminum phthalocyanines (AlPcS) for producing singlet oxygen through the LSPR-enhanced two-photon absorption (TPA) excitation of AlPcS. The laser threshold intensity for cancer cell inactivation with the applied Au NRI linked with AlPcS is significantly lower when compared to that with the Au NRI not linked with AlPcS. The comparison of inactivation threshold intensity between the cases of fs and continuous laser illuminations at the same wavelength and with the same average power confirms the crucial factor of TPA under fs laser illumination for producing the PDT effect.
The different death pathways of cancer cells under the conditions of the photothermal (PT), effect, photodynamic (PD) effect, and their combination are evaluated. By incubating cells with Au nanoring (NRI) either linked with the photosensitizer, AlPcS, or not, the illumination of a visible continuous laser for exciting the photosensitizer or an infrared femtosecond laser for exciting the localized surface plasmon resonance of Au NRI, leads to various PT and PD conditions for study. Three different staining dyes are used for identifying the cell areas of different damage conditions at different temporal points of observation. The cell death pathways and apoptotic evolution speeds under different cell treatment conditions are evaluated based on the calibration of the threshold laser fluences for causing early-apoptosis (EA) and necrosis (NE) or late-apoptosis (LA). It is found that with the PT effect only, strong cell NE is generated and the transition from EA into LA is faster than that caused by the PD effect when the EA stage is reached within 0.5 h after laser illumination. By combining the PT and PD effects, in the first few hours, the transition speed becomes lower, compared to the case of the PT effect only, when both Au NRIs internalized into cells and adsorbed on cell membrane exist. When the Au NRIs on cell membrane is removed, in the first few hours, the transition speed becomes higher, compared to the case of the PD effect only.
original video cube deformed video cube original frames deformed framesWe introduce a scalable content-aware video retargeting method. Here, we render pairs of original and deformed motion trajectories in red and blue. Making the relative transformation of such pathlines consistent ensures temporal coherence of the resized video. AbstractThe key to high-quality video resizing is preserving the shape and motion of visually salient objects while remaining temporallycoherent. These spatial and temporal requirements are difficult to reconcile, typically leading existing video retargeting methods to sacrifice one of them and causing distortion or waving artifacts. Recent work enforces temporal coherence of content-aware video warping by solving a global optimization problem over the entire video cube. This significantly improves the results but does not scale well with the resolution and length of the input video and quickly becomes intractable. We propose a new method that solves the scalability problem without compromising the resizing quality. Our method factors the problem into spatial and time/motion components: we first resize each frame independently to preserve the shape of salient regions, and then we optimize their motion using a reduced model for each pathline of the optical flow. This factorization decomposes the optimization of the video cube into sets of subproblems whose size is proportional to a single frame's resolution and which can be solved in parallel. We also show how to incorporate cropping into our optimization, which is useful for scenes with numerous salient objects where warping alone would degenerate to linear scaling. Our results match the quality of state-of-the-art retargeting methods while dramatically reducing the computation time and memory consumption, making content-aware video resizing scalable and practical.
We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.
Magnetic nanoparticles (MNPs) are few of the nanoparticles used clinically. When MNPs are delivered into human body, they are ingested by macrophages. We evaluated the cellular response of macrophage after MNPs loading. In face of stimulation by lipopolysaccharide, a strong stimulant derived from bacterial cell wall, MNPs loaded macrophage exhibited decreased phagocytic activity and decreased generation of cytokines such as TNF-alpha, IL-1beta whereas increased nitric oxide generation was noticed. Although these changes might decrease bactiericidal activity, it also alleviates the risk of senses, a life threatening phenomenon in infection patients. The finding has significant implications on nanoparticle based targeted drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.