This study was aimed to investigate the effects of water extracts of Graptopetalum paraguayense (WGP, 4 g/d) on blood pressure, blood glucose level, and lipid profiles in subjects with metabolic syndrome (MS). Participants with MS (n = 54) were randomly assigned to the placebo (n = 28) and WGP groups (n = 26), and the intervention was administered for 12 weeks. Systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting glucose (FG), lipid profiles (total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein (HDL-C)), and antioxidant enzymes activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx)) were measured. Forty-two subjects completed the study (placebo, n = 19; WGP, n = 23). FG, SBP, and LDL-C levels were significantly lower and HDL-C level and antioxidant enzymes activities (CAT and SOD) were significantly higher after WGP supplementation. Blood pressure, FG, and lipid profiles were significantly correlated with antioxidant enzymes activities after supplementation (P < 0.05). The present study demonstrated a significant reduction in blood pressure, blood glucose, and lipid profiles and an increase in antioxidant enzymes activities in subjects with MS after WGP supplementation. Taken together, the antioxidative capacity of WGP might exert a beneficial effect on MS. This trial is registered with ClinicalTrials.gov NCT01463748.
This study demonstrated a significant reduction in inflammatory status in MS after WGP supplementation. WGP may exert an anti-inflammatory effect on MS in addition to its antioxidant ability.
4-Hydroxylphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxylphenylpyruvate (HPP) to homogentisate, the important step for tyrosine catabolism. Comparison of the structure of human HPPD with the substrate-bound structure of A. thaliana HPPD revealed notably different orientations of the C-terminal helix. This helix performed as a closed conformation in human enzyme. Simulation revealed a different substrate-binding mode in which the carboxyl group of HPP interacted by a H-bond network formed by Gln334, Glu349 (the metal-binding ligand), and Asn363 (in the C-terminal helix). The 4-hydroxyl group of HPP interacted with Gln251 and Gln265. The relative activity and substrate-binding affinity were preserved for the Q334A mutant, implying the alternative role of Asn363 for HPP binding and catalysis. The reduction in kcat/Km of the Asn363 mutants confirmed the critical role in catalysis. Compared to the N363A mutant, the dramatic reduction in the Kd and thermal stability of the N363D mutant implies the side-chain effect in the hinge region rotation of the C-terminal helix. The activity and binding affinity were not recovered by double mutation; however, the 4-hydroxyphenylacetate intermediate formation by the uncoupled reaction of Q334N/N363Q and Q334A/N363D mutants indicated the importance of the H-bond network in the electrophilic reaction. These results highlight the functional role of the H-bond network in a closed conformation of the C-terminal helix to stabilize the bound substrate. The extremely low activity and reduction in Q251E’s Kd suggest that interaction coupled with the H-bond network is crucial to locate the substrate for nucleophilic reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.