The continental population of northern pintails (Anas acuta; hereafter pintails) has declined since the late 1970s, possibly due to poor breeding propensity, low nest success, and low survival rates in response to habitat loss. Survival estimates are unavailable for several winter and migration areas including the Playa Lakes Region (PLR) of northwestern Texas, USA. We investigated winter survival rates, documented periods of mortality, and identified possible causes of mortality for 159 and 168 radiotagged female pintails during 23 October 2002–18 February 2003 and 10 October 2003–18 February 2004, respectively. We located all radiotagged pintails at least once weekly to verify survival status and used‐known fate modeling in program MARK to test the influence of capture period, female age class, body mass, and capture location on survival rates. Cumulative survival for the 119‐day period in 2002–2003 was 0.925 (95% CI = 86.0–96.3). During 2003–2004, for a 134‐day period, survival estimates declined to 0.694 (95% CI = 57.1–79.5). The period of highest mortality occurred during the pintail hunting season with 88% of deaths during 2002–2003 and 34% of deaths during 2003–2004 occurring during this period. Age class and capture period did not affect survival rates either year. There was a positive linear correlation between body mass at time of capture and survival rates during winter for 2003–2004. The lower survival during 2003–2004 was probably due to fewer wetlands being available in the PLR. Our results suggest that habitat conditions and hunting disturbance impact survival of pintails in the PLR of Texas. To maintain orincrease wintering pintail survival in the PLR, management should expand wetland availability to wintering waterfowl, enhance food resources, provide refuging areas, and initiate a means for perpetual conservation of playas.
Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.
Background and Aims Coastal wetlands have evolved to withstand stressful abiotic conditions through the maintenance of hydrologic feedbacks between vegetation production and flooding. However, disruption of these feedbacks can lead to ecosystem collapse, or a regime shift from vegetated wetland to open water. To prevent the loss of critical coastal wetland habitat, we must improve understanding of the abiotic–biotic linkages among flooding and wetland stability. The aim of this research was to identify characteristic landscape patterns and thresholds of wetland degradation that can be used to identify areas of vulnerability, reduce flooding threats and improve habitat quality. Methods We measured local- and landscape-scale responses of coastal wetland vegetation to flooding stress in healthy and degrading coastal wetlands. We hypothesized that conversion of Spartina patens wetlands to open water could be defined by a distinct change in landscape configuration pattern, and that this change would occur at a discrete elevation threshold. Key Results Despite similarities in total land and water cover, we observed differences in the landscape configuration of vegetated and open water pixels in healthy and degrading wetlands. Healthy wetlands were more aggregated, and degrading wetlands were more fragmented. Generally, greater aggregation was associated with higher wetland elevation and better drainage, compared with fragmented wetlands, which had lower elevation and poor drainage. The relationship between vegetation cover and elevation was non-linear, and the conversion from vegetated wetland to open water occurred beyond an elevation threshold of hydrologic stress. Conclusions The elevation threshold defined a transition zone where healthy, aggregated, wetland converted to a degrading, fragmented, wetland beyond an elevation threshold of 0.09 m [1988 North American Vertical Datum (NAVD88)] [0.27 m mean sea level (MSL)], and complete conversion to open water occurred beyond 0.03 m NAVD88 (0.21 m MSL). This work illustrates that changes in landscape configuration can be used as an indicator of wetland loss. Furthermore, in conjunction with specific elevation thresholds, these data can inform restoration and conservation planning to maximize wetland stability in anticipation of flooding threats.
The mottled duck (Anas fulgivula) is a non-migratory duck dependent on coastal habitats to meet all of its life cycle requirements in the Western Gulf Coast (WGC) of Texas and Louisiana, USA. This population of mottled ducks has experienced a moderate decline during the past 2 decades. Adult survival has been identified as an important factor influencing population demography. Previous work based on band-recovery data has provided only annual estimates of survival. We assessed seasonal patterns of female mottled duck survival from 2009 to 2012 using individuals marked with satellite platform transmitter terminals (PTTs). We used temperature and movement sensors within each PTT to indicate potential mortality events. We estimated cumulative weekly survival and ranked factors influential in patterns of mortality using known-fate modeling in Program MARK. Models included 4 predictors: week; hunting and non-hunting periods; biological periods defined as breeding, brooding, molt, and pairing; and mass at time of capture. Models containing hunt periods, during and outside the mottled duck season, comprised essentially 100% of model weights where both legal and illegal harvest had a negative influence on mottled duck survival. Survival rates were low during 2009-2011 (12-38% annual rate of survival), when compared with the long-term banding average of 53% annual survival. During 2011, survival of female mottled ducks was the lowest annual rate (12%) ever documented and coincided with extreme drought. Management actions maximizing the availability of wetlands and associated upland habitats during hunting seasons and drought conditions may increase adult female mottled duck survival. Ó
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.