We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.
Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate–mangrove linkages in many parts of the world. Recently, the quality and availability of global‐scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global‐scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range‐limit‐specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature‐based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall‐based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west‐central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and diversity of mangrove forests. In general, warmer winter temperatures are expected to allow mangroves to expand poleward at the expense of salt marshes. However, dispersal and habitat availability constraints may hinder expansion near certain range limits. Along arid and semiarid coasts, decreases or increases in rainfall are expected to lead to mangrove contraction or expansion, respectively. Collectively, our analyses quantify climate–mangrove linkages and improve our understanding of the expected global‐ and regional‐scale effects of climate change upon mangrove forests.
Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.
In the 21st century, accelerated sea‐level rise and continued coastal development are expected to greatly alter coastal landscapes across the globe. Historically, many coastal ecosystems have responded to sea‐level fluctuations via horizontal and vertical movement on the landscape. However, anthropogenic activities, including urbanization and the construction of flood‐prevention infrastructure, can produce barriers that impede ecosystem migration. Here we show where tidal saline wetlands have the potential to migrate landward along the northern Gulf of Mexico coast, one of the most sea‐level rise sensitive and wetland‐rich regions of the world. Our findings can be used to identify migration corridors and develop sea‐level rise adaptation strategies to help ensure the continued availability of wetland‐associated ecosystem goods and services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.