An isolate of a new tospovirus species, causing concentric zoned ringspots on fruits and necrotic lesions on leaves of infected plants, was characterised based on particle morphology, host range and serological properties. The complete nucleotide sequences of large (L), medium (M), and small (S) RNAs of this virus were found to contain 8919, 4945, and 3279 nts respectively. The L RNA encoded the RNA-dependent RNA polymerase (RdRp) (2885 aa, 332.7 kDa). The M RNA encoded a non-structural (NSm) protein (309 aa, 34.4 kDa) and a viral glycoprotein precursor (Gn/Gc) (1122 aa, 127.4 kDa). The S RNA encoded a non-structural protein (NSs) (459 aa, 51.9 kDa) and the nucleocapsid (N) protein (278 aa, 30.6 kDa). This N protein shared amino acid identities of 80.9% with those of calla lily chlorotic spot virus. Our results suggest that the virus studied here belongs to a new tospovirus species, for which the name tomato zonate spot virus is proposed.
A chimeric gene fusion cassette, consisting of a secretory sequence from barley alpha-amylase joined to a modified cecropin (MB39) coding sequence and placed under control of the promoter and terminator from the potato proteinase inhibitor II (PiII) gene, was introduced into tobacco by Agrobacterium-mediated transformation. Transgenic and control plants reacted differently when inoculated with tobacco wildfire pathogen Pseudomonas syringae pv. tabaci at various cell concentrations. With control plants (transformed with a PiII-GUS [beta-D-glucuronidase] gene fusion), necrosis was clearly visible in leaf tissue infiltrated with bacterial inoculum levels of 10(2), 10(3), 10(4), 10(5), and 10(6) CFU/ml. With MB39-transgenic plants, however, necrosis was observed only in the areas infiltrated with the two highest levels (10(5) and 10(6) CFU/ml). No necrosis was evident in areas infiltrated with bacterial concentrations of 10(4) CFU/ml or less. Bacterial multiplication in leaves of MB39-transgenic plants was suppressed more than 10-fold compared to control plants, and absence of disease symptom development was associated with this growth suppression. We conclude that the pathogen-induced promoter and the secretory sequence were competent elements for transforming a cecropin gene into an effective disease-control gene for plants.
A new carlavirus, tentatively named Potato virus H (PVH), was found on potato plants with mild symptoms in Hohhot, Inner Mongolia Autonomous Region, China. PVH was confirmed by genome sequencing, serological reactions, electron microscopy, and host index assays. The PVH particles were filamentous and slightly curved, with a modal length of 570 nm. Complete RNA genomic sequences of two isolates of PVH were determined using reverse transcription-PCR (RT-PCR) and the 5′ rapid amplification of cDNA ends (5' RACE) method. Sequence analysis revealed that PVH had the typical genomic organization of members of the genus Carlavirus, with a positive-sense single-stranded genome of 8410 nt. It shared coat protein (CP) and replicase amino acid sequence identities of 17.9–56.7% with those of reported carlaviruses. Phylogenetic analyses based on the protein-coding sequences of replicase and CP showed that PVH formed a distinct branch, which was related only distantly to other carlaviruses. Western blotting assays showed that PVH was not related serologically to other potato carlaviruses (Potato virus S, Potato virus M, and Potato latent virus). PVH systemically infected Nicotiana glutinosa but not Nicotiana tabacum, Nicotiana benthamiana , or Chenopodium quinoa , which is in contrast with the other potato carlaviruses. These results support the classification of PVH as a novel species in the genus Carlavirus. Preliminary results also indicated that a cysteine-rich protein encoded by the smallest ORF located in the 3' proximal region of the genome suppressed local RNA silencing and enhanced the pathogenicity of the recombinant PVX.
A new tospovirus, HCRV 2007-ZDH, was isolated from a Hippeastrum sp. plant displaying necrotic and chlorotic ringspot symptoms in Yunnan province. This virus isolate was characterized based on particle morphology and RNA sequences analyses. Quasi-spherical, enveloped particles measuring about 70-100 nm, typical of tospoviruses, were observed in sap and cells of the infected plants. Transmission studies by inoculating this isolate mechanically to Hippeastrum sp. confirmed that 2007-ZDH is the causal agent of the chlorotic ringspot disease of Hippeastrum sp. The complete sequence of S RNA of 2007-ZDH was 2,744 nucleotides in length, sharing 74.4 % nucleotide identity with Tomato yellow ring virus (TYRV) isolate tomato (AY686718). The S RNA encoded a non-structural protein (NSs) (444 aa, 50.4 kDa) and the nucleocapsid (N) protein (273 aa, 30.1 kDa).The deduced NSs protein shared amino acid identities of 78.6, 76.3, and 74.9 % with that of TYRV, IYSV, and PolRSV, respectively. The deduced N protein shared amino acid identities of 86.1, 84.7, and 70.0 % with that of PolRSV, TYRV, and IYSV, respectively. These results suggest that the chlorotic ringspot virus belongs to a new tospovirus species, for which the name Hippeastrum chlorotic ringspot virus (HCRV) is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.