Background: Infectious disease epidemiology and planetary health literature often cite solid waste and plastic pollution as risk factors for vector-borne diseases and urban zoonoses; however, no rigorous reviews of the risks to human health have been published since 1994. This paper aims to identify research gaps and outline potential solutions to interrupt the vicious cycle of solid wastes; disease vectors and reservoirs; infection and disease; and poverty. Methods: We searched peer-reviewed publications from PubMed, Google Scholar, and Stanford Searchworks, and references from relevant articles using the search terms ("disease" OR "epidemiology") AND ("plastic pollution," "garbage," and "trash," "rubbish," "refuse," OR "solid waste"). Abstracts and reports from meetings were included only when they related directly to previously published work. Only articles published in English, Spanish, or Portuguese through 2018 were included, with a focus on post-1994, after the last comprehensive review was published. Cancer, diabetes, and food chain-specific articles were outside the scope and excluded. After completing the literature review, we further limited the literature to "urban zoonotic and biological vector-borne diseases" or to "zoonotic and biological vector-borne diseases of the urban environment." Results: Urban biological vector-borne diseases, especially Aedes-borne diseases, are associated with solid waste accumulation but vector preferences vary over season and region. Urban zoonosis, especially rodent and canine disease reservoirs, are associated with solid waste in urban settings, especially when garbage accumulates over time, creating burrowing sites and food for reservoirs. Although evidence suggests the link between plastic pollution/solid waste and human disease, measurements are not standardized, confounders are not rigorously controlled, and the quality of evidence varies. Here we propose a framework for solutions-based research in three areas: innovation, education, and policy. Krystosik et al. Solid Wastes and Disease Vectors and Reservoirs Conclusions: Disease epidemics are increasing in scope and scale with urban populations growing, climate change providing newly suitable vector climates, and immunologically naïve populations becoming newly exposed. Sustainable solid waste management is crucial to prevention, specifically in urban environments that favor urban vectors such as Aedes species. We propose that next steps should include more robust epidemiological measurements and propose a framework for solutions-based research.
Aqueous free available chlorine (FAC) can be photolyzed by sunlight and/or artificial UV light to generate various reactive oxygen species, including HO(•) and O((3)P). The influence of this chemistry on inactivation of chlorine-resistant microorganisms was investigated using Bacillus subtilis endospores as model microbial agents and simulated and natural solar radiation as light sources. Irradiation of FAC solutions markedly enhanced inactivation of B. subtilis spores in 10 mM phosphate buffer; increasing inactivation rate constants by as much as 600%, shortening inactivation curve lag phase by up to 73% and lowering CTs required for 2 log10 inactivation by as much as 71% at pH 8.0 and 10 °C. Similar results were observed at pH 7.4 and 10 °C in two drinking water samples with respective DOC concentrations and alkalinities of 0.6 and 1.2 mg C/L and 81.8 and 17.1 mg/L as CaCO3. Solar radiation alone did not inactivate B. subtilis spores under the conditions investigated. A variety of experimental data indicate that the observed enhancements in spore inactivation can be attributed to the concomitant attack of spores by HO(•) and O3, the latter of which was found to accumulate to micromolar concentrations during simulated solar irradiation of 10 mM phosphate buffer (pH 8, 10 °C) containing [FAC]0 = 8 mg/L as Cl2.
Prenatal and early childhood lead exposures impair cognitive development. We aimed to evaluate the prevalence of elevated blood lead levels (BLLs) among pregnant women in rural Bangladesh and to identify sources of lead exposure. We analyzed the BLLs of 430 pregnant women randomly selected from rural communities in central Bangladesh. Fifty-seven cases were selected with the highest BLLs, ≥ 7 μg/dL, and 59 controls were selected with the lowest BLLs, < 2 μg/dL. An exposure questionnaire was administered and soil, rice, turmeric, water, traditional medicine, agrochemical, and can samples were analyzed for lead contamination. Of all 430 women, 132 (31%) had BLLs > 5 μg/dL. Most women with elevated BLLs were spatially clustered. Cases were 2.6 times more likely than controls to consume food from a can (95% CI 1.0–6.3, p = 0.04); 3.6 times more likely to use Basudin, a specific brand of pesticide (95% CI 1.6–7.9, p = 0.002); 3.6 times more likely to use Rifit, a specific brand of herbicide (95% CI 1.7–7.9, p = 0.001); 2.9 times more likely to report using any herbicides (95% CI 1.2–7.3, p = 0.02); and 3.3 times more likely to grind rice (95% CI 1.3–8.4, p = 0.01). Five out of 28 food storage cans were lead-soldered. However, there was minimal physical evidence of lead contamination from 382 agrochemical samples and 129 ground and unground rice samples. Among 17 turmeric samples, one contained excessive lead (265 μg/g) and chromium (49 μg/g). Overall, we found evidence of elevated BLLs and multiple possible sources of lead exposure in rural Bangladesh. Further research should explicate and develop interventions to interrupt these pathways.
Understanding mosquito breeding behavior as well as human perspectives and practices are crucial for designing interventions to control Aedes aegypti mosquito-borne diseases as these mosquitoes primarily breed in water-holding containers around people's homes. The objectives of this study were to identify productive mosquito breeding habitats in coastal Kenya and to understand household mosquito management behaviors and their behavioral determinants. The field team conducted entomological surveys in 444 households and semi-structured interviews with 35 female caregivers and 37 children in Kwale County, coastal Kenya, between May and December 2016. All potential mosquito habitats with or without water were located, abundances of mosquito immatures measured and their characteristics recorded. Interviews explored household mosquito management behaviors and their behavioral determinants. 2,452 container mosquito habitats were counted containing 1,077 larvae and 390 pupae, predominantly Aedes species. More than one-third of the positive containers were found outside houses in 1 of the 10 villages. Containers holding water with no intended purpose contained 55.2% of all immature mosquitoes. Containers filled with rainwater held 95.8% of all immature mosquitoes. Interviews indicated that households prioritize sleeping under bednets as a primary protection against mosquito-borne disease because of concern about night-time biting, malaria-transmitting Anopheles mosquitoes. Respondents had limited knowledge about the mosquito life cycle, especially with respect to daytime biting, container-breeding Aedes mosquitoes. Therefore, respondents did not prioritize source reduction. Most mosquitoes breed in containers that have no direct or immediate purpose ("no-purpose containers"). These containers may be left unattended for several days allowing rainwater to collect, and creating ideal conditions for mosquito breeding. An
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.