Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.
Edited by Charles E. SamuelPhosphoprotein is the main cofactor of the viral RNA polymerase of Mononegavirales. It is involved in multiple interactions that are essential for the polymerase function. Most prominently it positions the polymerase complex onto the nucleocapsid, but also acts as a chaperone for the nucleoprotein. Mononegavirales phosphoproteins lack sequence conservation, but contain all large disordered regions. We show here that Nand C-terminal intrinsically disordered regions account for 80% of the phosphoprotein of the respiratory syncytial virus. But these regions display marked dynamic heterogeneity. Whereas almost stable helices are formed C terminally to the oligomerization domain, extremely transient helices are present in the N-terminal region. They all mediate internal long-range contacts in this non-globular protein. Transient secondary elements together with fully disordered regions also provide protein binding sites recognized by the respiratory syncytial virus nucleoprotein and compatible with weak interactions required for the processivity of the polymerase. Human respiratory syncytial virus (hRSV),3 a member of the family Pneumoviridae (1) and order Mononegavirales (MNV), is the main viral cause of lower respiratory tract illness worldwide, and the main agent responsible for bronchiolitis and pneumonia in infants (2). All children have been infected by the age of two, requiring hospitalization in ϳ5% cases (3). Elderly and immunocompromised adults are also at increased risk. No efficient treatment is presently available for hRSV (4), and vaccination is challenging due to complex immunogenicity (5). The search for hRSV antiviral drugs directed toward specific viral functions is therefore still ongoing (6).The hRSV RNA-dependent RNA complex (RdRp) constitutes a virus-specific target with specific protein-protein interactions that have not all been investigated in detail (7). It uses the nonsegmented single-stranded negative sense RNA genome of hRSV as a template. In infected cells, the viral RdRp is found in specific inclusion bodies (8), which have been shown to be transcription and replication centers for other Mononegavirales, e.g. rabies (9) and vesicular stomatitis viruses (10). The apo RdRp complex is composed a minima of the large catalytic subunit (L) and its essential cofactor, the phosphoprotein (P) (11, 12). The P protein plays a central role in the RdRp by interacting with all main RdRp components. During transcription and replication it tethers the L protein to the nucleocapsid (NC), consisting of the genomic RNA packaged by the nucleoprotein (N), by direct interaction with N (13-16). hRSV P also binds to the transcription antitermination factor M2-1 (17-19). Phosphorylation of P has been proposed to regulate these interactions, although it is not essential for replication (20 -22). P also acts as a chaperone for neo-synthesized N by forming an N 0 ⅐P complex that preserves N in a monomeric and RNA-free state (23). We have shown previously that formation of hRSV NC⅐P and ...
The RNA genome of respiratory syncytial virus (RSV) is constitutively encapsidated by the viral nucleoprotein N, thus forming a helical nucleocapsid. Polymerization of N along the genomic and antigenomic RNAs is concomitant to replication and requires the preservation of an unassembled monomeric nucleoprotein pool. To this end, and by analogy with Paramyxoviridae and Rhabdoviridae, it is expected that the viral phosphoprotein P acts as a chaperone protein, forming a soluble complex with the RNA-free form of N (N 0 -P complex). Here, we have engineered a mutant form of N that is monomeric, is unable to bind RNA, still interacts with P, and could thus mimic the N 0 monomer. We used this N mutant, designated N mono , as a substitute for N 0 in order to characterize the P regions involved in the N 0 -P complex formation. Using a series of P fragments, we determined by glutathione S-transferase (GST) pulldown assays that the N and C termini of P are able to interact with N mono . We analyzed the functional role of amino-terminal residues of P by site-directed mutagenesis, using an RSV polymerase activity assay based on a human RSV minireplicon, and found that several residues were critical for viral RNA synthesis. Using GST pulldown and surface plasmon resonance assays, we showed that these critical residues are involved in the interaction between P[1-40] peptide and N mono in vitro. Finally, we showed that overexpression of the peptide P[1-29] can inhibit the polymerase activity in the context of the RSV minireplicon, thus demonstrating that targeting the N 0 -P interaction could constitute a potential antiviral strategy. IMPORTANCERespiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants. Since no vaccine or efficient antiviral treatment is available against RSV, it is essential to better understand how the viral machinery functions in order to develop new antiviral strategies. RSV phosphoprotein P, the main RNA polymerase cofactor, is believed to function as a chaperon protein, maintaining N as a nonassembled, RNA-free protein (N 0 ) competent for RNA encapsidation. In this paper, we provide the first evidence, to our knowledge, that the N terminus of P contains a domain that binds specifically to this RNA-free form of N. We further show that overexpression of a small peptide spanning this region of P can inhibit viral RNA synthesis. These findings extend our understanding of the function of RSV RNA polymerase and point to a new target for the development of drugs against this virus. T he human respiratory syncytial virus (HRSV) is the leading cause of severe respiratory tract infections in newborn children worldwide (1). HRSV infects close to 100% of infants within the first 2 years of life and is the main cause of bronchiolitis. It is also recognized as a significant cause of severe respiratory infections in the elderly. The virus belongs to the Mononegavirales order and constitutes the prototype virus of the Pneumovirus genus of the Paramyxoviridae family. As f...
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in infants and is characterized by pulmonary infiltration of B cells in fatal cases. We analyzed the B cell compartment in human newborns and identified a population of neonatal regulatory B lymphocytes (nBreg cells) that produced interleukin 10 (IL-10) in response to RSV infection. The polyreactive B cell receptor of nBreg cells interacted with RSV protein F and induced upregulation of chemokine receptor CX3CR1. CX3CR1 interacted with RSV glycoprotein G, leading to nBreg cell infection and IL-10 production that dampened T helper 1 (Th1) cytokine production. In the respiratory tract of neonates with severe RSV-induced acute bronchiolitis, RSV-infected nBreg cell frequencies correlated with increased viral load and decreased blood memory Th1 cell frequencies. Thus, the frequency of nBreg cells is predictive of the severity of acute bronchiolitis disease and nBreg cell activity may constitute an early-life host response that favors microbial pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.