Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-158–177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-158–177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.
Edited by Charles E. SamuelPhosphoprotein is the main cofactor of the viral RNA polymerase of Mononegavirales. It is involved in multiple interactions that are essential for the polymerase function. Most prominently it positions the polymerase complex onto the nucleocapsid, but also acts as a chaperone for the nucleoprotein. Mononegavirales phosphoproteins lack sequence conservation, but contain all large disordered regions. We show here that Nand C-terminal intrinsically disordered regions account for 80% of the phosphoprotein of the respiratory syncytial virus. But these regions display marked dynamic heterogeneity. Whereas almost stable helices are formed C terminally to the oligomerization domain, extremely transient helices are present in the N-terminal region. They all mediate internal long-range contacts in this non-globular protein. Transient secondary elements together with fully disordered regions also provide protein binding sites recognized by the respiratory syncytial virus nucleoprotein and compatible with weak interactions required for the processivity of the polymerase. Human respiratory syncytial virus (hRSV),3 a member of the family Pneumoviridae (1) and order Mononegavirales (MNV), is the main viral cause of lower respiratory tract illness worldwide, and the main agent responsible for bronchiolitis and pneumonia in infants (2). All children have been infected by the age of two, requiring hospitalization in ϳ5% cases (3). Elderly and immunocompromised adults are also at increased risk. No efficient treatment is presently available for hRSV (4), and vaccination is challenging due to complex immunogenicity (5). The search for hRSV antiviral drugs directed toward specific viral functions is therefore still ongoing (6).The hRSV RNA-dependent RNA complex (RdRp) constitutes a virus-specific target with specific protein-protein interactions that have not all been investigated in detail (7). It uses the nonsegmented single-stranded negative sense RNA genome of hRSV as a template. In infected cells, the viral RdRp is found in specific inclusion bodies (8), which have been shown to be transcription and replication centers for other Mononegavirales, e.g. rabies (9) and vesicular stomatitis viruses (10). The apo RdRp complex is composed a minima of the large catalytic subunit (L) and its essential cofactor, the phosphoprotein (P) (11, 12). The P protein plays a central role in the RdRp by interacting with all main RdRp components. During transcription and replication it tethers the L protein to the nucleocapsid (NC), consisting of the genomic RNA packaged by the nucleoprotein (N), by direct interaction with N (13-16). hRSV P also binds to the transcription antitermination factor M2-1 (17-19). Phosphorylation of P has been proposed to regulate these interactions, although it is not essential for replication (20 -22). P also acts as a chaperone for neo-synthesized N by forming an N 0 ⅐P complex that preserves N in a monomeric and RNA-free state (23). We have shown previously that formation of hRSV NC⅐P and ...
Presently, respiratory syncytial virus (RSV), the main cause of severe respiratory infections in infants, cannot be treated efficiently with antivirals. However, its RNA-dependent polymerase complex offers potential targets for RSV-specific drugs. This includes the recognition of its template, the ribonucleoprotein complex (RNP), consisting of genomic RNA encapsidated by the RSV nucleoprotein, N. This recognition proceeds via interaction between the phosphoprotein P, which is the main polymerase cofactor, and N. The determinant role of the C terminus of P, and more particularly of the last residue, F241, in RNP binding and viral RNA synthesis has been assessed previously. Here, we provide detailed structural insight into this crucial interaction for RSV polymerase activity. We solved the crystallographic structures of complexes between the N-terminal domain of N (N-NTD) and C-terminal peptides of P and characterized binding by biophysical approaches. Our results provide a rationale for the pivotal role of F241, which inserts into a well-defined N-NTD pocket. This primary binding site is completed by transient contacts with upstream P residues outside the pocket. Based on the structural information of the N-NTD:P complex, we identified inhibitors of this interaction, selected by in silico screening of small compounds, that efficiently bind to N and compete with P in vitro. One of the compounds displayed inhibitory activity on RSV replication, thereby strengthening the relevance of N-NTD for structure-based design of RSV-specific antivirals. IMPORTANCERespiratory syncytial virus (RSV) is a widespread pathogen that is a leading cause of acute lower respiratory infections in infants worldwide. RSV cannot be treated efficiently with antivirals, and no vaccine is presently available, with the development of pediatric vaccines being particularly challenging. Therefore, there is a need for new therapeutic strategies that specifically target RSV. The interaction between the RSV phosphoprotein P and the ribonucleoprotein complex is critical for viral replication. In this study, we identified the main structural determinants of this interaction, and we used them to screen potential inhibitors in silico. We found a family of molecules that were efficient competitors of P in vitro and showed inhibitory activity on RSV replication in cellular assays. These compounds provide a basis for a pharmacophore model that must be improved but that holds promises for the design of new RSV-specific antivirals. H uman respiratory syncytial virus (HRSV) is the main cause of acute lower respiratory infections in infants worldwide (1).No RSV vaccine is presently available, and the development of pediatric vaccines is particularly challenging. Currently, antiviral therapy is limited to palivizumab, a humanized mouse monoclonal antibody that targets the RSV fusion protein and is licensed for prophylactic use, and ribavirin, which has been used to treat severe infections despite its toxicity, its teratogenicity, and the limited evidence...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.