The Ribosome-associated Quality Control (RQC) pathway co-translationally marks incomplete polypeptides from stalled translation with two signals that trigger their proteasomemediated degradation. The E3 ligase Ltn1 adds ubiquitin and Rqc2 directs the large ribosomal subunit to append carboxy-terminal alanine and threonine residues (CAT tails). When excessive amounts of incomplete polypeptides evade Ltn1, CAT-tailed proteins accumulate and can self-associate into aggregates. CAT tail aggregation has been hypothesized to either protect cells by sequestering potentially toxic incomplete polypeptides or harm cells by disrupting protein homeostasis. To distinguish between these possibilities, we modulated CAT tail aggregation in Saccharomyces cerevisiae with genetic and chemical tools to analyze CAT tails in aggregated and un-aggregated states. We found that enhancing CAT tail aggregation induces proteotoxic stress and antagonizes degradation of CAT-tailed proteins, while inhibiting aggregation reverses these effects. Our findings suggest that CAT tail aggregation harms RQC-compromised cells and that preventing aggregation can mitigate this toxicity. OPEN ACCESS Citation: Sitron CS, Park JH, Giafaglione JM, Brandman O (2020) Aggregation of CAT tails blocks their degradation and causes proteotoxicity in S. cerevisiae. PLoS ONE 15(1): e0227841.
The prostate epithelium is comprised predominantly of basal and luminal cells. In vivo lineage tracing has been utilized to define the differentiation capacity of mouse prostate basal and luminal cells during development, tissue-regeneration and transformation. However, evaluating cell-intrinsic and extrinsic regulators of prostate epithelial differentiation capacity using a lineage tracing approach often requires extensive breeding and can be cost-prohibitive. In the prostate organoid assay, basal and luminal cells generate prostatic epithelium ex vivo. Importantly, primary epithelial cells can be isolated from mice of any genetic background or mice treated with any number of small molecules prior to, or after, plating into three-dimensional (3D) culture. Sufficient material for evaluation of differentiation capacity is generated after 7-10 days. Collection of basal-derived and luminal-derived organoids for (1) protein analysis by Western blot and (2) immunohistochemical analysis of intact organoids by whole-mount confocal microscopy enables researchers to evaluate the ex vivo differentiation capacity of prostate epithelial cells. When used in combination, these two approaches provide complementary information about the differentiation capacity of prostate basal and luminal cells in response to genetic or pharmacological manipulation.
Prostate cancer cells that survive clinical androgen receptor (AR) blockade mediate disease progression and lethality. Reprogrammed metabolic signaling is one mechanism by which tumor cells can survive treatment. However, how AR inhibition reprograms metabolism, and whether altered metabolism can be exploited to eradicate cells that survive AR blockade, remains unclear. Here, we comprehensively characterized the effect of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. AR inhibition maintains oxidative mitochondrial metabolism and reduces glycolytic signaling, through hexokinase II downregulation and decreased MYC activity. Robust elongation of mitochondria via reduced DRP1 activity supports cell fitness after AR blockade. In addition, AR inhibition enhances sensitivity to complex I inhibitors in several models, suggesting that AR blockade increases reliance on oxidative mitochondrial metabolism. Our study provides an enhanced understanding of how AR inhibition alters metabolic signaling and highlights the potential of therapies that target metabolic vulnerabilities in AR-inhibited cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.