Titanium alloys are equipped with impressive high strength and low density, along with other notable mechanical properties. Often the choice for low to intermediate temperature mechanical applications, titanium alloys are well utilised within the aerospace industry, making up 40% of the aero-engine. Within the gas turbine engine, the high transient thermal stresses developed due to variations in power requirements during a typical flight cycle give rise to the phenomenon of thermo-mechanical fatigue (TMF). The lifing models utilised within this research focus on damage tolerance approaches. TMF crack growth test techniques have been developed for high performance titanium alloys, in which diverse phasing (φ) between mechanical loading and temperature have been investigated. In addition, factors affecting the TMF behaviour of Ti-6246, including peak temperature, minimum temperature and temperature range have also been explored.
A bespoke TMF crack growth test set-up has been developed and validated for use throughout this study and the effects of phasing between mechanical loading and temperature have been investigated. The study shows that TMF cycles may show increased crack growth rate behaviour when compared to isothermal fatigue. The phase angle of the applied TMF cycle can also affect crack growth behaviour, with in-phase (IP) test conditions showing faster crack growth rates than out-of-phase (OP) test conditions. Propagating cracks interact with the microstructure of the material, in particular, the α/β interfaces within the prior beta grains and supporting fractography evidences subtle differences in fracture mechanisms as a result of phase angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.