words):In December 2019, SARS-CoV-2 emerged causing the COVID-19 pandemic. SARS-CoV, the agent responsible for the 2003 SARS outbreak, utilizes ACE2 and TMPRSS2 host molecules for viral entry. ACE2 and TMPRSS2 have recently been implicated in SARS-CoV-2 viral infection.Additional host molecules including ADAM17, cathepsin L, CD147, and GRP78 may also function as receptors for SARS-CoV-2.To determine the expression and in situ localization of candidate SARS-CoV-2 receptors in the respiratory mucosa, we analyzed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples.We demonstrate absent to low ACE2 promoter activity in a variety of lung epithelial cell samples and low ACE2 gene expression in both microarray and scRNAseq datasets of epithelial cell populations. Consistent with gene expression, rare ACE2 protein expression was observed in the airway epithelium and alveoli of human lung. We present confirmatory evidence for the presence of TMPRSS2, CD147, and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 in the respiratory mucosa.Collectively, our data suggest the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternate receptors for SARS-CoV-2 exist to facilitate initial host cell infection.In 2003, the severe acute respiratory syndrome (SARS) outbreak caused by the SARS coronavirus (CoV) resulted in 8096 probable cases with 774 confirmed deaths [1, 2] In patients with SARS, deaths were attributed to acute respiratory distress associated with diffuse bilateral pneumonia and alveolar damage [3]. In December 2019, SARS-CoV-2 emerged causing the COVID-19 pandemic. SARS-CoV-2 is spreading at a much more rapid rate than SARS-CoV [4][5][6]. Similar clinical reports of diffuse bilateral pneumonia and alveolar damage have been reported [7][8][9]. Severe cases of SARS-CoV-2 have been associated with infections of the lower respiratory tract with detection of the virus throughout this tissue as well as the upper respiratory tract [7][8][9]. The biological mechanisms that may govern differences in the number of SARS and COVID-19 cases remain undefined. It is possible that SARS-CoV-2 possesses distinct molecular mechanisms that impact the virulence through viral proteins, greater susceptibility of host cells to infection, permissivity of host cells to virus replication, or some combination of these and other potentially unknown factors [10][11][12][13]. Understanding SARS and SARS-CoV-2 virus similarities and differences at the molecular level in the host may provide insights into transmission, pathogenesis, and interventions.The seminal report identifying the receptor for SARS-CoV used a HEK29...
In December 2019, SARS-CoV-2 emerged causing the COVID-19 pandemic. SARS-CoV, the agent responsible for the 2003 SARS outbreak, utilises ACE2 and TMPRSS2 host molecules for viral entry. ACE2 and TMPRSS2 have recently been implicated in SARS-CoV-2 viral infection. Additional host molecules including ADAM17, cathepsin L, CD147, and GRP78 may also function as receptors for SARS-CoV-2.To determine the expression and in situ localisation of candidate SARS-CoV-2 receptors in the respiratory mucosa, we analysed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, proteomic datasets, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples.We demonstrate absent to low ACE2 promoter activity in a variety of lung epithelial cell samples and low ACE2 gene expression in both microarray and scRNAseq datasets of epithelial cell populations. Consistent with gene expression, rare ACE2 protein expression was observed in the airway epithelium and alveoli of human lung, confirmed with proteomics. We present confirmatory evidence for the presence of TMPRSS2, CD147, and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa.Collectively, our data suggest the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternate receptors for SARS-CoV-2 exist to facilitate initial host cell infection.
Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer patients, and identify a median of one mitochondrial single-nucleotide variant (mtSNV) per patient. Some of these mtSNVs occur in recurrent mutational hotspots and associate with aggressive disease. Younger patients have fewer mtSNVs than those who diagnosed at an older age. We demonstrate strong links between mitochondrial and nuclear mutational profiles, with co-occurrence between specific mutations. For example, certain control region mtSNVs co-occur with gain of the MYC oncogene, and these mutations are jointly associated with patient survival. These data demonstrate frequent mitochondrial mutation in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer.
Highlights SARS-CoV-2 induces the expression of type I IFNs in human lung cells Moderate cases of COVID-19 have higher serum levels of IL-10 and IFNa Severe cases of COVID-19 have higher serum levels of IL-6, TNFa and IL-8 Physiological levels of IFNa reduces SARS-CoV-2 replication in human airway cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.