Background: Plasma markers for stroke could be useful in diagnosis and prognosis and in prediction of response of stroke patients to therapy. PARK7 and nucleoside diphosphate kinase A (NDKA) are increased in human postmortem cerebrospinal fluid (CSF), a model of global brain insult, suggesting that measurement in CSF and, more importantly, in plasma may be useful as a biomarker of stroke. Methods: We used ELISA to measure PARK7 and NDKA in plasma in 3 independent European and North American retrospective studies encompassing a total of 622 stroke patients and 165 control individuals. Results: Increases in both biomarkers were highly significant, with sensitivities of 54%-91% for PARK7 and 70%-90% for NDKA and specificities of 80%-97% for PARK7 and 90%-97% for NDKA. The concentrations of both biomarkers increased within 3 h of stroke onset. Conclusions: PARK7 and NDKA may be useful plasma biomarkers for the early diagnosis of stroke. In addition, this study demonstrated the utility of analysis of postmortem CSF proteins as a first step in the discovery of plasma markers of ischemic brain injury.
Nucleoli are plurifunctional nuclear domains involved in the regulation of several major cellular processes such as ribosome biogenesis, the biogenesis of non-ribosomal ribonucleoprotein complexes, cell cycle, and cellular aging. Until recently, the protein content of nucleoli was poorly described. Several proteomic analyses have been undertaken to discover the molecular bases of the biological roles fulfilled by nucleoli. These studies have led to the identification of more than 700 proteins. Extensive bibliographic and bioinformatic analyses allowed the classification of the identified proteins into functional groups and suggested potential functions of 150 human proteins previously uncharacterized. The combination of improvements in mass spectrometry technologies, the characterization of protein complexes, and data mining will assist in furthering our understanding of the role of nucleoli in different physiological and pathological cell states.
Images obtained from high-throughput mass spectrometry (MS) contain information that remains hidden when looking at a single spectrum at a time. Image processing of liquid chromatography-MS datasets can be extremely useful for quality control, experimental monitoring and knowledge extraction. The importance of imaging in differential analysis of proteomic experiments has already been established through two-dimensional gels and can now be foreseen with MS images. We present MSight, a new software designed to construct and manipulate MS images, as well as to facilitate their analysis and comparison.
Only few biological markers are currently available for the routine diagnosis of brain damage-related disorders including cerebrovascular, dementia, and other neurodegenerative diseases. In this study, post-mortem cerebrospinal fluid samples were used as a model of massive brain insult to identify new markers potentially relevant for neurodegeneration. The protein pattern of this sample was compared to the one of cerebrospinal fluid from healthy subjects by two-dimensional gel electrophoresis. Using gel imaging, N-terminal microsequencing, mass spectrometry, and immunodetection techniques, we identified 13 differentially expressed proteins. Most of these proteins have been previously reported to be somehow associated with brain destruction or with the molecular mechanisms underlying certain neurodegenerative conditions. These data indicate that the identified proteins indeed represent potential biomarkers of brain damage. We recently showed that H-FABP, a protein highly homologous to E-FABP and A-FABP identified in this study, is a potential marker of Creutzfeldt-Jakob disease and stroke.
Early diagnosis and immediate therapeutic interventions are crucial factors to reduce the damage extent and the risk of death. Currently, the diagnosis of stroke relies on neurological assessment of the patient and neuro-imaging techniques including computed tomography and/or magnetic resonance imaging scan. An early diagnostic marker of stroke, ideally capable to discriminate ischemic from hemorrhagic stroke would considerably improve patient acute management. Using surface-enhanced laser desorption/ionization (SELDI) technology, we aimed at finding new early diagnostic plasmatic markers of stroke. Strong anionic exchange (SAX) SELDI profiles of plasma samples from 21 stroke patients were compared to 21 samples from healthy controls. Seven peaks appeared to be differentially expressed with significant p values (p < 0.05). Proteins were stripped from the SAX chips, separated on a one-dimensional electrophoresis (1-DE) gel and stained using mass spectrometry (MS)-compatible silver staining. Following in-gel tryptic digestion, the peptides were analyzed by MS. Four candidate proteins were identified as apolipoprotein CI (ApoC-I), apolipoprotein CIII (ApoC-III), serum amyloid A (SAA), and antithrombin-III fragment (AT-III fragment). Assessment of ApoC-I and ApoC-III levels in plasma samples using a sandwich enzyme-linked immunosorbent assay (ELISA) allowed to distinguish between hemorrhagic (n = 15) and ischemic (n = 16) stroke (p < 0.001). To the best of our knowledge, ApoC-I and ApoC-III are the first reported plasmatic biomarkers capable to accurately distinguish between ischemic and hemorrhagic stroke in a small number of patients. It requires further investigation in a large cohort of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.