Birds are plagued by an impressive diversity of ectoparasites, ranging from feather-feeding lice, to featherdegrading bacteria. Many of these ectoparasites have severe negative effects on host fitness. It is therefore not surprising that selection on birds has favored a variety of possible adaptations for dealing with ectoparasites. The functional significance of some of these defenses has been well documented. Others have barely been studied, much less tested rigorously. In this article we review the evidence -or lack thereof -for many of the purported mechanisms birds have for dealing with ectoparasites. We concentrate on features of the plumage and its components, as well as anti-parasite behaviors. In some cases, we present original data from our own recent work. We make recommendations for future studies that could improve our understanding of this poorly known aspect of avian biology.
Introduced parasites threaten native host species that lack effective defenses. Such parasites increase the risk of extinction, particularly in small host populations like those on islands. If some host species are tolerant to introduced parasites, this could amplify the risk of the parasite to vulnerable host species. Recently, the introduced parasitic nest fly Philornis downsi has been implicated in the decline of Darwin's finch populations in the Galápagos Islands. In some years, 100% of finch nests fail due to P. downsi; however, other common host species nesting near Darwin's finches, such as the endemic Galápagos mockingbird (Mimus parvulus), appear to be less affected by P. downsi. We compared effects of P. downsi on mockingbirds and medium ground finches (Geospiza fortis) on Santa Cruz Island in the Galápagos. We experimentally manipulated the abundance of P. downsi in nests of mockingbirds and finches to measure the direct effect of the parasite on the reproductive success of each species of host. We also compared immunological and behavioral responses by each species of host to the fly. Although nests of the two host species had similar parasite densities, flies decreased the fitness of finches but not mockingbirds. Neither host species had a significant antibody-mediated immune response to P. downsi. Moreover, finches showed no significant increase in begging, parental provisioning, or plasma glucose levels in response to the flies. In contrast, parasitized mockingbird nestlings begged more than nonparasitized mockingbird nestlings. Greater begging was correlated with increased parental provisioning behavior, which appeared to compensate for parasite damage. The results of our study suggest that finches are negatively affected by P. downsi because they do not have such behavioral mechanisms for energy compensation. In contrast, mockingbirds are capable of compensation, making them tolerant hosts, and a possible indirect threat to Darwin's finches.
Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasiteinduced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Gal apagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi-binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi-binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody-mediated defenses against ectoparasites. Philornis downsi-binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi-induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune defenses, rather than assuming that such responses increase host fitness.
The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations. The possibility that epigenetic changes can accumulate over longer periods of evolutionary time has seldom been tested empirically. This study was designed to compare epigenetic changes among several closely related species of Darwin’s finches, a well-known example of adaptive radiation. Erythrocyte DNA was obtained from five species of sympatric Darwin’s finches that vary in phylogenetic relatedness. Genome-wide alterations in genetic mutations using copy number variation (CNV) were compared with epigenetic alterations associated with differential DNA methylation regions (epimutations). Epimutations were more common than genetic CNV mutations among the five species; furthermore, the number of epimutations increased monotonically with phylogenetic distance. Interestingly, the number of genetic CNV mutations did not consistently increase with phylogenetic distance. The number, chromosomal locations, regional clustering, and lack of overlap of epimutations and genetic mutations suggest that epigenetic changes are distinct and that they correlate with the evolutionary history of Darwin’s finches. The potential functional significance of the epimutations was explored by comparing their locations on the genome to the location of evolutionarily important genes and cellular pathways in birds. Specific epimutations were associated with genes related to the bone morphogenic protein, toll receptor, and melanogenesis signaling pathways. Species-specific epimutations were significantly overrepresented in these pathways. As environmental factors are known to result in heritable changes in the epigenome, it is possible that epigenetic changes contribute to the molecular basis of the evolution of Darwin’s finches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.