Measuring teacher effectiveness is challenging since no direct estimate exists; teacher effectiveness can be measured only indirectly through student responses. Traditional value-added assessment (VAA) models generally attempt to estimate the value that an individual teacher adds to students' knowledge as measured by scores on successive administrations of a standardized test. Such responses, however, do not reflect the long-term contribution of a teacher to real-world student outcomes such as graduation, and cannot be used in most university settings where standardized tests are not given. In this paper, the authors develop a multiresponse approach to VAA models that allows responses to be either continuous or categorical. This approach leads to multidimensional estimates of value added by teachers and allows the correlations among those dimensions to be explored. The authors derive sufficient conditions for maximum likelihood estimators to be consistent and asymptotically normally distributed. The authors then demonstrate how to use SAS software to calculate estimates. The models are applied to university data from 2001 to 2008 on calculus instruction and graduation in a science or engineering field.
Correlation is inherent in longitudinal studies due to the repeated measurements on subjects, as well as due to time-dependent covariates in the study. In the National Longitudinal Study of Adolescent to Adult Health (Add Health), data were repeatedly collected on children in grades 7-12 across four waves. Thus, observations obtained on the same adolescent were correlated, while predictors were correlated with current and future outcomes such as obesity status, among other health issues. Previous methods, such as the generalized method of moments (GMM) approach have been proposed to estimate regression coefficients for time-dependent covariates. However, these approaches combined all valid moment conditions to produce an averaged parameter estimate for each covariate and thus assumed that the effect of each covariate on the response was constant across time. This assumption is not necessarily optimal in applications such as Add Health or health-related data. Thus, we depart from this assumption and instead use the Partitioned GMM approach to estimate multiple coefficients for the data based on different time periods. These extra regression coefficients are obtained using a partitioning of the moment conditions pertaining to each respective relationship. This approach offers a deeper understanding and appreciation into the effect of each covariate on the response.We conduct simulation studies, as well as analyses of obesity in Add Health, rehospitalization in Medicare data, and depression scores in a clinical study.The Partitioned GMM methods exhibit benefits over previously proposed models with improved insight into the nonconstant relationships realized when analyzing longitudinal data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.