Mutations in FLVCR2, a cell surface protein related by homology and membrane topology to the heme exporter/retroviral receptor FLVCR1, have recently been associated with Fowler syndrome, a vascular disorder of the brain. We previously identified FLVCR2 to function as a receptor for FY981 feline leukemia virus (FeLV). However, the cellular function of FLVCR2 remains unresolved. Here, we report the cellular function of FLVCR2 as an importer of heme, based on the following observations. First, FLVCR2 binds to heminconjugated agarose, and binding is competed by free hemin. Second, mammalian cells and Xenopus laevis oocytes expressing FLVCR2 display enhanced heme uptake. Third, heme import is reduced after the expression of FLVCR2-specific small interfering RNA (siRNA) or after the binding of the FY981 FeLV envelope protein to the FLVCR2 receptor. Finally, cells overexpressing FLVCR2 are more sensitive to heme toxicity, a finding most likely attributable to enhanced heme uptake. Tissue expression analysis indicates that FLVCR2 is expressed in a broad range of human tissues, including liver, placenta, brain, and kidney. The identification of a cellular function for FLVCR2 will have important implications in elucidating the pathogenic mechanisms of Fowler syndrome and of phenotypically associated disorders.Membrane transporters play essential roles in cellular homeostasis by importing substrates critical for cell growth and differentiation or by exporting substrates that cause toxicity. There are five major categories of membrane transporters consisting of over 550 transporter superfamilies (41). The major facilitator superfamily (MFS) is the largest and most diverse superfamily, consisting of over 10,000 members (31, 41). Transporters in this superfamily consist of 12 to 14 transmembrane (TM)-spanning segments and transport substrates as diverse as sugars, polyols, drugs, neurotransmitters, amino acids, organic/inorganic ions, and peptides (31). Recently, a disruption of MFS transporters that is associated with human diseases has been described, further confirming their role in the maintenance of normal cell homeostasis. The DIRC2 MFS transporter (substrate transported unknown) is disrupted in renal cell carcinoma cosegregating with a t(2;3)(q35;q21) chromosomal translocation (4). Mutations in the thiamine transporter THTR1 have been shown to be responsible for Rogers syndrome (14, 21), a thiamine-responsive megaloblastic anemia. We have recently reported that a disruption in the heme exporter FLVCR1 (MFSD7B) plays a role in Diamond Blackfan anemia (DBA) (40), a fatal infant anemia characterized by a block in erythroid progenitor cell development (3, 12, 13). The abrogation of FLVCR1 function in primary human hematopoietic stem cells (40) or in a human erythroid cell line (37) specifically disrupts erythropoiesis, mimicking the hematological features observed for patients with DBA. We have reported previously that FLVCR1 is disrupted not as a consequence of mutations in the FLVCR1 coding region but due to the aberrant...
The mammalian target of rapamycin (mTOR) plays crucial roles in proliferative and antiapoptotic signaling in lymphoid malignancies. Rapamycin analogs, which are allosteric mTOR complex 1 (mTORC1) inhibitors, are active in mantle cell lymphoma and other lymphoid neoplasms, but responses are usually partial and short-lived. In the present study we compared the effects of rapamycin with the dual mTORC1/mTORC2 inhibitor OSI-027 in cell lines and clinical samples representing divers lymphoid malignancies. In contrast to rapamycin, OSI-027 markedly diminished proliferation and induced apoptosis in a variety of lymphoid cell lines and clinical samples, including specimens of B-cell acute lymphocytic leukemia (ALL), mantle cell lymphoma, marginal zone lymphoma and Sezary syndrome. Additional analysis demonstrated that OSI-027-induced apoptosis depended on transcriptional activation of the PUMA and BIM genes. Overexpression of Bcl-2, which neutralizes Puma and Bim, or loss of procaspase 9 diminished OSI-027-induced apoptosis in vitro. Moreover, OSI-027 inhibited phosphorylation of mTORC1 and mTORC2 substrates, upregulated Puma, and induced regressions in Jeko xenografts. Collectively, these results not only identify a pathway that is critical for the cytotoxicity of dual mTORC1/mTORC2 inhibitors, but also suggest that simultaneously targeting mTORC1 and mTORC2 might be an effective anti-lymphoma strategy in vivo. (Blood. 2012;119(2):476-487) IntroductionDespite being considered among the most treatable malignancies, lymphomas and lymphocytic leukemias continue to account for more than 27 000 deaths annually in the US 1 These statistics highlight the continued need for improved therapy.Over the past 6 years, rapamycin and its derivatives temsirolimus and everolimus (collectively called rapalogs) have shown promising activity in a wide range of lymphoma subtypes. 2 These agents are allosteric inhibitors of the mammalian target of rapamycin (mTOR), a highly conserved serine/threonine kinase that integrates signaling from the phosphoinositide-3-kinase (PI3K)/ Akt and AMP kinase pathways as well as others (reviewed in Bjornsti and Houghton, 3 Dowling et al, 4 and Sengupta et al 5 ). Through its involvement in 2 distinct complexes, mTOR complex 1 (mTORC1) and mTORC2, mTOR modulates several processes, including mRNA translation, cell cycle progression, survival and motility. 4,6 In particular, the raptor-containing mTORC1 phosphorylates p70 S6 kinase and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), thereby regulating translation of certain messages that are critical for progression from G 1 into S phase (cyclin D1, c-myc) and, in some cells, survival . 4,7 In addition, the rictor-containing mTORC2 phosphorylates Akt on Ser 473 , affecting Akt-mediated survival signaling, and AGC family kinases, 4,6 thereby modulating cell motility.The effects of rapalogs on signaling are complex. After rapamycin initially binds to the cytosolic protein FKBP12, the resulting complex interacts with the FK-rapamycin binding domain o...
Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum (ER) protein that functions, along with WRB and TRC40, to mediate tail-anchored (TA) protein insertion into the ER membrane. Physiologic roles for CAML include endocytic trafficking, intracellular calcium signaling, and the survival and proliferation of specialized immune cells, recently attributed to its requirement for TA protein insertion. To identify a possible role for CAML in cancer cells, we generated Eμ-Myc transgenic mice that carry a tamoxifen-inducible deletion allele of Caml. In multiple B-cell lymphoma cell lines derived from these mice, homozygous loss of Caml activated apoptosis. Cell death was blocked by Bcl-2/Bcl-xL overexpression; however, rescue from apoptosis was insufficient to restore proliferation. Tumors established from an Eμ-Myc lymphoma cell line completely regressed after tamoxifen administration, suggesting that CAML is also required for these cancer cells to survive and grow in vivo. Cell cycle analyses of Caml-deleted lymphoma cells revealed an arrest in G2/M, accompanied by low expression of the mitotic marker, phospho-histone H3 (Ser10). Surprisingly, lymphoma cell viability did not depend on the domain of CAML required for its interaction with TRC40. Furthermore, a small protein fragment consisting of the C-terminal 111 amino acid residues of CAML, encompassing the WRB-binding domain, was sufficient to rescue growth and survival of Caml-deleted lymphoma cells. Critically, this minimal region of CAML did not restore TA protein insertion in knockout cells. Taken together, these data reveal an essential role for CAML in supporting survival and mitotic progression in Myc-driven lymphomas that is independent of its TA protein insertion function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.