Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.
Calcium modulating cyclophilin ligand (CAML) is a ubiquitously expressed cytoplasmic protein that is implicated in the EGFR and LCK signaling pathways and required for early embryonic and thymocyte development. To further define the critical biological functions of CAML at the cellular level, we generated CAML-deleted mouse embryonic fibroblasts (MEFs) using an in vitro Cre-loxP mediated conditional knockout system. We found that CAML−/− MEFs have severely impaired proliferation and a strong reduction of normal anaphases. The primary mitotic defect of CAML−/− MEFs is that duplicated chromosomes fail to segregate in anaphase, resulting in nuclear bisection by the cleavage furrow as cells decondense their DNA and exit mitosis, highly reminiscent of the “cut” phenotype in fission yeast. This phenotype is due to spindle dysfunction rather than inability to resolve physical connections between sister chromatids. Furthermore, CAML−/− MEFs display defects often seen in cells with mitotic checkpoint gene deficiencies, including lagging and misaligned chromosomes and chromatin bridges. Consistent with this, we found that CAML−/− MEFs have a modestly weakened spindle assembly checkpoint (SAC) and increased aneuploidy. Thus, our data identify CAML as a novel chromosomal instability gene and suggest that CAML protein acts as a key regulator of mitotic spindle function and a modulator of SAC maintenance.
Appropriate control of apoptosis during T lymphocyte differentiation is critical for destruction of T cells bearing potentially autoreactive or useless immuno-receptors, and for survival of those T cells bearing antigen receptors that may recognize foreign proteins. Despite the well-established importance of thymocyte survival, the exact signals regulating thymocyte apoptosis have not been fully elucidated. Here, we show that thymocytes lacking the endoplasmic reticulum (ER) protein CAML failed to undergo normal T cell development and exhibited dramatically increased rates of apoptosis. In vitro, CAML-deficient thymocytes accumulated high levels of reactive oxygen species (ROS) and underwent abnormally accelerated death in response to several cytotoxic stimuli, including treatment with etoposide, cytokine deprivation or Fas ligation. Although neither p53 deletion nor loss of Fas rescued the survival and continued development of CAML-deficient thymocytes, removal of the pro-apoptotic BH3-only Bcl-2 family member Bim significantly restored their survival. This work reveals CAML to be a critically important regulator of ROS- and Bim-dependent thymocyte death.
Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum (ER) protein that functions, along with WRB and TRC40, to mediate tail-anchored (TA) protein insertion into the ER membrane. Physiologic roles for CAML include endocytic trafficking, intracellular calcium signaling, and the survival and proliferation of specialized immune cells, recently attributed to its requirement for TA protein insertion. To identify a possible role for CAML in cancer cells, we generated Eμ-Myc transgenic mice that carry a tamoxifen-inducible deletion allele of Caml. In multiple B-cell lymphoma cell lines derived from these mice, homozygous loss of Caml activated apoptosis. Cell death was blocked by Bcl-2/Bcl-xL overexpression; however, rescue from apoptosis was insufficient to restore proliferation. Tumors established from an Eμ-Myc lymphoma cell line completely regressed after tamoxifen administration, suggesting that CAML is also required for these cancer cells to survive and grow in vivo. Cell cycle analyses of Caml-deleted lymphoma cells revealed an arrest in G2/M, accompanied by low expression of the mitotic marker, phospho-histone H3 (Ser10). Surprisingly, lymphoma cell viability did not depend on the domain of CAML required for its interaction with TRC40. Furthermore, a small protein fragment consisting of the C-terminal 111 amino acid residues of CAML, encompassing the WRB-binding domain, was sufficient to rescue growth and survival of Caml-deleted lymphoma cells. Critically, this minimal region of CAML did not restore TA protein insertion in knockout cells. Taken together, these data reveal an essential role for CAML in supporting survival and mitotic progression in Myc-driven lymphomas that is independent of its TA protein insertion function.
Calcium-modulating cyclophilin ligand (CAML) is a ubiquitously expressed protein that is important during thymopoiesis. However, whether it serves a function in mature lymphocytes is unknown. In this article, we show that CAML is essential for survival of peripheral follicular (Fo) B cells. Conditional deletion of CAML in CD19-Cre transgenic mice caused a significant reduction in Fo cell numbers and increased rates of homeostatic proliferation. CAML-deficient Fo cells showed increased cellular turnover and normal proliferative ability. Although CAML-deficient Fo cells responded to AgR stimulation and to B cell activating factor, they displayed decreased survival and increased apoptosis following stimulation with LPS and IL-4 in vitro. Failure to survive was not due to aberrant B cell development in the absence of CAML, because induced deletion of the gene in mature cells resulted in a similar phenotype. These data establish an essential and ongoing role for CAML in the long-term survival of mature B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.