Seasonal changes in mammalian physiology, such as those affecting reproduction, hibernation, and metabolism, are controlled by pituitary hormones released in response to annual environmental changes. In temperate zones, the primary environmental cue driving seasonal reproductive cycles is the change in day length (i.e., photoperiod), encoded by the pattern of melatonin secretion from the pineal gland. However, although reproduction relies on hypothalamic gonadotrophin-releasing hormone output, and most cells producing reproductive hormones are in the pars distalis (PD) of the pituitary, melatonin receptors are localized in the pars tuberalis (PT), a physically and functionally separate part of the gland. How melatonin in the PT controls the PD is not understood. Here we show that melatonin time-dependently acts on its receptors in the PT to alter splicing of vascular endothelial growth factor (VEGF). Outside the breeding season (BS), angiogenic VEGF-A stimulates vessel growth in the infundibulum, aiding vascular communication among the PT, PD, and brain. This also acts on VEGF receptor 2 (VEGFR2) expressed in PD prolactin-producing cells known to impair gonadotrophin secretion. In contrast, in the BS, melatonin releases antiangiogenic VEGF-Ab from the PT, inhibiting infundibular angiogenesis and diminishing lactotroph (LT) VEGFR2 expression, lifting reproductive axis repression in response to shorter day lengths. The time-dependent, melatonin-induced differential expression of VEGF-A isoforms culminates in alterations in gonadotroph function opposite to those of LTs, with up-regulation and down-regulation of gonadotrophin gene expression during the breeding and nonbreeding seasons, respectively. These results provide a mechanism by which melatonin can control pituitary function in a seasonal manner.
Angiogenesis and vascular regression are critical for the female ovulatory cycle. They enable progression and regression of follicular development, and corpora lutea formation and regression. Angiogenesis in the ovary occurs under the control of the vascular endothelial growth factor-A (VEGFA) family of proteins, which are generated as both pro-(VEGF165) and anti(VEGF165b)-angiogenic isoforms by alternative splicing. To determine the role of the VEGF165b isoforms in the ovulatory cycle, we measured VEGF165b expression in marmoset ovaries by immunohistochemistry and ELISA, and used transgenic mice over-expressing VEGF165b in the ovary. VEGF165b was expressed in the marmoset ovaries in granulosa cells and theca, and the balance of VEGF165b:VEGF165 was regulated during luteogenesis. Mice over-expressing VEGF165b in the ovary were less fertile than wild-type littermates, had reduced secondary and tertiary follicles after mating, increased atretic follicles, fewer corpora lutea and generated fewer embryos in the oviduct after mating, and these were more likely not to retain the corona radiata. These results indicate that the balance of VEGFA isoforms controls follicle progression and luteogenesis, and that control of isoform expression may regulate fertility in mammals, including in primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.