Cancer is a leading cause of death worldwide and an estimated 1 in 4 deaths in the United States is due to cancer. Despite recent advances in cancer treatment, adverse effects related to cancer therapy remain a limiting factor for many patients. The ideal cancer treatment would selectively target cancerous cells while sparing normal, healthy cells to offer maximal therapeutic benefit while minimizing toxicity. Telomeres are structurally unique DNA sequences at the end of human chromosomes, which play an integral role in the cellular mortality of normal cells. As telomeres shorten with successive cellular divisions, cells develop chromosomal instability and undergo either apoptosis or senescence. In many cancers, this apoptosis or senescence is avoided as normal telomere length is maintained by a ribonucleoprotein reverse transcriptase called telomerase. Telomerase is expressed in more than 85% of all cancers and confers cancerous cells with a replicative immortality, which is a hallmark of malignant tumors. In contrast, telomerase activity is not detectable in the majority of normal somatic cell populations. Therefore, the targeting of telomerase and telomere maintenance mechanisms represent a potentially promising therapeutic approach for various types of cancer. This review evaluates the roles of GRN163L, T-oligo and small molecule G-quadruplex stabilizers as potential anticancer therapies by targeting telomerase and other telomere maintenance mechanisms.
Numerous tyrosine kinase inhibitors (TKIs) targeting c-Met are currently in clinical trials for several cancers. Their efficacy is limited due to the development of resistance. The present study aims to elucidate this mechanism of c-Met TKI resistance by investigating key mTOR and Wnt signaling proteins in melanoma cell lines resistant to SU11274, a c-Met TKI. Xenografts from RU melanoma cells treated with c-Met TKIs SU11274 and JNJ38877605 showed a 7- and 6-fold reduction in tumor size, respectively. Resistant cells displayed upregulation of phosphorylated c-Met, mTOR, p70S6Kinase, 4E-BP1, ERK, LRP6, and active β-catenin. In addition, GATA-6, a Wnt signaling regulator, was upregulated, and Axin, a negative regulator of the Wnt pathway, was downregulated in resistant cells. Modulation of these mTOR and Wnt pathway proteins was also prevented by combination treatment with SU11274, everolimus, an mTOR inhibitor, and XAV939, a Wnt inhibitor. Treatment with everolimus, resulted in 56% growth inhibition, and a triple combination of SU11274, everolimus and XAV939, resulted in 95% growth inhibition in RU cells. The V600E BRAF mutation was found to be positive only in MU cells. Combination treatment with a c-Met TKI and a BRAF inhibitor displayed a synergistic effect in reducing MU cell viability. These studies indicate activation of mTOR and Wnt signaling pathways in c-Met TKI resistant melanoma cells and suggest that concurrent targeting of c-Met, mTOR, and Wnt pathways and BRAF may improve efficacy over traditional TKI monotherapy in melanoma patients.
Background Hospitalized patients with COVID‐19 have increased risks of venous (VTE) and arterial thromboembolism (ATE). Active cancer diagnosis and treatment are well‐known risk factors; however, a risk assessment model (RAM) for VTE in patients with both cancer and COVID‐19 is lacking. Objectives To assess the incidence of and risk factors for thrombosis in hospitalized patients with cancer and COVID‐19. Methods Among patients with cancer in the COVID‐19 and Cancer Consortium registry (CCC19) cohort study, we assessed the incidence of VTE and ATE within 90 days of COVID‐19–associated hospitalization. A multivariable logistic regression model specifically for VTE was built using a priori determined clinical risk factors. A simplified RAM was derived and internally validated using bootstrap. Results From March 17, 2020 to November 30, 2020, 2804 hospitalized patients were analyzed. The incidence of VTE and ATE was 7.6% and 3.9%, respectively. The incidence of VTE, but not ATE, was higher in patients receiving recent anti‐cancer therapy. A simplified RAM for VTE was derived and named CoVID‐TE ( C ancer subtype high to very‐high risk by o riginal Khorana score +1, V TE history +2, I CU admission +2, D ‐dimer elevation +1, recent systemic anti‐cancer T herapy +1, and non‐Hispanic E thnicity +1). The RAM stratified patients into two cohorts (low‐risk, 0–2 points, n = 1423 vs. high‐risk, 3+ points, n = 1034) where VTE occurred in 4.1% low‐risk and 11.3% high‐risk patients (c statistic 0.67, 95% confidence interval 0.63–0.71). The RAM performed similarly well in subgroups of patients not on anticoagulant prior to admission and moderately ill patients not requiring direct ICU admission. Conclusions Hospitalized patients with cancer and COVID‐19 have elevated thrombotic risks. The CoVID‐TE RAM for VTE prediction may help real‐time data‐driven decisions in this vulnerable population.
IMPORTANCEAndrogen deprivation therapy (ADT) has been theorized to decrease the severity of SARS-CoV-2 infection in patients with prostate cancer owing to a potential decrease in the tissuebased expression of the SARS-CoV-2 coreceptor transmembrane protease, serine 2 (TMPRSS2). OBJECTIVE To examine whether ADT is associated with a decreased rate of 30-day mortality from SARS-CoV-2 infection among patients with prostate cancer. DESIGN, SETTING, AND PARTICIPANTS This cohort study analyzed patient data recorded in the COVID-19 and Cancer Consortium registry between March 17, 2020, and February 11, 2021. The consortium maintains a centralized multi-institution registry of patients with a current or past diagnosis of cancer who developed COVID-19. Data were collected and managed using REDCap software hosted at Vanderbilt University Medical Center in Nashville, Tennessee. Initially, 1228patients aged 18 years or older with prostate cancer listed as their primary malignant neoplasm were included; 122 patients with a second malignant neoplasm, insufficient follow-up, or low-quality data were excluded. Propensity matching was performed using the nearest-neighbor method with a 1:3 ratio of treated units to control units, adjusted for age, body mass index, race and ethnicity, Eastern Cooperative Oncology Group performance status score, smoking status, comorbidities (cardiovascular, pulmonary, kidney disease, and diabetes), cancer status, baseline steroid use, COVID-19 treatment, and presence of metastatic disease. EXPOSURES Androgen deprivation therapy use was defined as prior bilateral orchiectomy or pharmacologic ADT administered within the prior 3 months of presentation with COVID-19. MAIN OUTCOMES AND MEASURESThe primary outcome was the rate of all-cause 30-day mortality after COVID-19 diagnosis for patients receiving ADT compared with patients not receiving ADT after propensity matching. RESULTSAfter exclusions, 1106 patients with prostate cancer (before propensity score matching: median age, 73 years [IQR, 65-79 years]; 561 (51%) self-identified as non-Hispanic White) were included for analysis. Of these patients, 477 were included for propensity score matching (169 who received ADT and 308 who did not receive ADT). After propensity matching, there was no significant difference in the primary end point of the rate of all-cause 30-day mortality (OR, 0.77; 95% CI, 0.42-1.42).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.