We isolated a Bacillus cereus strain (CPTF) that represents a dominant community member of a mixed waste contaminated subsurface site as determined by 16S rRNA gene (V4 region) amplicon sequence variant profiling. Pangenomic analysis of the B. cereus group revealed significant genomic expansion in strain CPTF that was largely attributable to plasmid acquisition and transposable element mobilization. We further This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as
Bacillus cereus
strain CPT56D-587-MTF was isolated from nitrate- and toxic metal-contaminated subsurface sediment at the Oak Ridge Reservation (ORR) (Oak Ridge, TN, USA). Here, we report the complete genome sequence of this strain to provide genomic insight into its strategies for survival at this mixed-waste site.
Tellurium (Te) is an emerging contaminant and its chemical transformation in the environment is strongly influenced by microbial processes. In this study, we investigated the adsorption of tellurite [Te(IV), TeO 3 2−] onto the common soil bacterium Bacillus subtilis. Thiol-blocking experiments were carried out to investigate the role of cell surface sulfhydryl sites in tellurite binding, and extended X-ray absorption fine structure (EXAFS) spectroscopy was performed to determine the chemical speciation of the adsorbed tellurite. The results indicate that tellurite reacts with sulfhydryl functional groups in the extracellular polymeric substances (EPS) produced by B. subtilis. Upon binding to sulfhydryl sites in the EPS, the Te changes from Te−O bonds to Te−S coordination. Further analysis of the surface-associated molecules shows that the EPS of B. subtilis contain proteins. Removal of the proteinaceous EPS dramatically decreases tellurite adsorption and the sulfhydryl surface site concentration. These findings indicate that sulfhydryl binding in EPS plays a key role in tellurite adsorption on bacterial surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.