Mechanoelectrical transduction of acoustic signals is the fundamental process for hearing in all ears across the animal kingdom. Here, we performed in vivo laser-vibrometric and electrophysiological measurements at the transduction site in an insect ear (Mecopoda elongata) to relate the biomechanical tonotopy along the hearing organ to the frequency tuning of the corresponding sensory cells. Our mechanical and electrophysiological map revealed a biomechanical filter process that considerably sharpens the neuronal response. We demonstrate that the channel gating, which acts on chordotonal stretch receptor neurons, is based on a mechanical directionality of the sound-induced motion. Further, anatomical studies of the transduction site support our finding of a stimulus-relevant tilt. In conclusion, we were able to show, in an insect ear, that directionality of channel gating considerably sharpens the neuronal frequency selectivity at the peripheral level and have identified a mechanism that enhances frequency discrimination in tonotopically organized ears.
SUMMARY In the auditory system of bushcrickets, sound can reach the receptors via two different paths: (i) by acting on the outside of the tympana situated on both sides of each foreleg or (ii) through the acoustic trachea that opens at a spiracle on the thorax. While the spiracle is considered to be the main point of sound entry for higher audio and ultrasonic frequencies, the role of the tympana is still unclear. The tympana border the air-filled acoustic trachea as well as the fluid-filled haemolymph channel containing the receptor organs. To understand their role during sound transduction, the sound-induced neuronal response of the hearing organ was recorded in combination with measurement of tympanal membrane motion using laser-Doppler vibrometry. For far-field stimulation, the frequency of the most sensitive hearing (∼16 kHz) matched the frequency of a pronounced maximum of tympanal membrane vibration. A second maximum of tympanum motion at lower frequencies (∼7 kHz) was correlated with an increased nerve activity at higher intensities (>70 dB sound pressure level, SPL). These correlations support the hypothesis of functional coupling between tympanum motion and nerve activity. When sound stimuli were applied locally, through either the tympanum or the spiracle, significant differences between tympanum motion and nerve activity were found. These discrepancies show that tympanum motion and neuronal response are not coupled directly and that there is no linear relationship with the applied SPL. Taken together, these data verify a functional, albeit indirect, coupling of tympanum motion and sensory cell activity for one of the pronounced vibration maxima, which appears to represent a resonance frequency of the tympanum.
The tonotopically organized hearing organs of bushcrickets provide the opportunity for a detailed correlation of morphological and structural properties within hearing organs that are needed to establish tonotopic gradients. In the present study of a tonotopic insect hearing organ, we combine mechanical measurements of sound-induced hearing organ motion and detailed anatomical investigations to explore the anatomical basis of tonotopy. We compare mechanical data of frequency responses along the auditory organ to several anatomical parameters. Low frequency responses are related to larger organ and cap cell size in the proximal part of the hearing organ while in the distal part of the organ, small organ and cap cell size is related to high-frequency representation. However, the correlation between organ and cap cell size with continuous frequency representation along the organ is not very tight. Instead, the height of the organ and the corresponding length of the sensory dendrites are best correlated to tonotopic frequency representation. The sensory dendrite contains a ciliary root with a pronounced cross-banding of electron-dense material that should be important for the stiffness of the dendrite. The geometry of surrounding structures like the hemolymph channel and the acoustic trachea as well as the extension of the tectorial membrane are not correlated to the tonotopy. We provide evidence that tonotopy in the bushcricket hearing organ may depend on the size of ciliary structures. In particular, the ciliary root of the sensory cells is a likely cellular basis of tonotopy.
Bushcrickets have a tonotopically organised hearing organ, the so-called crista acustica, in the tibia of the forelegs. This organ responds to a frequency range of about 5-80 kHz and lies behind the anterior tympanum on top of a trachea branch. We analyzed the sound-induced vibration pattern of the anterior tympanum, using a Laser-Doppler-Vibrometer Scanning microscope system, in order to identify frequency-dependent amplitude and phase of displacement. The vibration pattern evoked by a frequency sweep (4-79 kHz) showed an amplitude maximum which would correspond to the resonance frequency of an open tube system. At higher frequencies of about 30 kHz a difference in the amplitude and phase response between the distal and the proximal part of the tympanum was detected. The inner plate of the tympanum starts to wobble at this frequency. This higher mode in the motion pattern is not explained by purely acoustic characteristics of the tracheal space below the tympanum but may depend on the mechanical impedance of the tympanum plate. In accordance with a previous hypothesis, the tympanum moves over the whole tested frequency range in the dorso-ventral direction like a hinged flap with the largest displacement in its ventral part and no higher modes of vibration.
Convergent evolution has led to surprising functional and mechanistic similarities between the vertebrate cochlea and some katydid ears [1,2]. Here we report on an 'auditory fovea' (Figure 1A) in the duetting katydid Ancylecha fenestrata (Tettigoniidae). The auditory fovea is a specialized inner-ear region with a disproportionate number of receptor cells tuned to a narrow frequency range, and has been described in the cochlea of some vertebrates, such as bats and mole rats [3,4]. In tonotopically organized ears, the location in the hearing organ of the optimal neuronal response to a tone changes gradually with the frequency of the stimulation tone. However, in the ears of A. fenestrata, the sensory cells in the auditory fovea are tuned to the dominant frequency of the female call; this area of the hearing organ is extensively expanded in males to provide an overrepresentation of this behaviorally important auditory input. Vertebrates developed an auditory fovea for improved prey or predator detection. In A. fenestrata, however, the foveal region facilitates acoustic pair finding, and the sexual dimorphism of sound-producing and hearing organs reflects the asymmetry in the mutual communication system between the sexes (Figures 1B, S1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.