AimsUse of the anti‐tumour antibiotic actinomycin D is associated with development of hepatotoxicity, particularly in young children. A paucity of actinomycin D pharmacokinetic data make it challenging to develop a sound rationale for defining dosing regimens in younger patients. The study aim was to develop a physiologically based pharmacokinetic (PBPK) model using a combination of data from the literature and generated from experimental analyses.MethodsAssays to determine actinomycin D Log P, blood:plasma partition ratio and ABCB1 kinetics were conducted. These data were combined with physiochemical properties sourced from the literature to generate a compound file for use within the modelling‐simulation software Simcyp (version 14 release 1). For simulation, information was taken from two datasets, one from 117 patients under the age of 21 and one from 20 patients aged 16–48.ResultsThe final model incorporated clinical renal and biliary clearance data and an additional systemic clearance value. The mean AUC0‐26h of simulated subjects was within 1.25‐fold of the observed AUC0‐26h (84 ng h ml−1 simulated vs. 93 ng h ml−1 observed). For the younger age ranges, AUC predictions were within two‐fold of observed values, with simulated data from six of the eight age/dose ranges falling within 15% of observed data. Simulated values for actinomycin D AUC0‐26h and clearance in infants aged 0–12 months ranged from 104 to 115 ng h ml−1 and 3.5–3.8 l h−1, respectively.ConclusionsThe model has potential utility for prediction of actinomycin D exposure in younger patients and may help guide future dosing. However, additional independent data from neonates and infants is needed for further validation. Physiological differences between paediatric cancer patients and healthy children also need to be further characterized and incorporated into PBPK models.
High‐risk neuroblastoma, a predominantly
TP53
wild‐type (wt) tumour, is incurable in >50% patients supporting the use of MDM2 antagonists as novel therapeutics. Idasanutlin (RG7388) shows
in vitro
synergy with chemotherapies used to treat neuroblastoma. This is the first study to evaluate the
in vivo
efficacy of the intravenous idasanutlin prodrug, RO6839921 (RG7775), both alone and in combination with temozolomide in
TP53
wt orthotopic neuroblastoma models. Detection of active idasanutlin using liquid chromatography‐mass spectrometry and p53 pathway activation by ELISA assays and Western analysis showed peak plasma levels 1 h post‐treatment with maximal p53 pathway activation 3–6 h post‐treatment. RO6839921 and temozolomide, alone or in combination in mice implanted with
TP53
wt SHSY5Y‐Luc and NB1691‐Luc cells showed that combined RO6839921 and temozolomide led to greater tumour growth inhibition and increase in survival compared to vehicle control. Overall, RO6839921 had a favourable pharmacokinetic profile consistent with intermittent dosing and was well tolerated alone and in combination. These preclinical studies support the further development of idasanutlin in combination with temozolomide in neuroblastoma in early phase clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.