Because there are currently no biological treatments for deafness, we sought to advance gene therapy approaches to treat genetic deafness. We reasoned that gene delivery systems that target auditory and vestibular sensory cells with high efficiency would be required to restore complex auditory and balance function. We focused on Usher Syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and used a knock-in mouse model, Ush1c c.216G>A, which carries a cryptic splice site mutation found in French-Acadian patients with Usher Syndrome type IC (USH1C). Following delivery of wild-type Ush1c into the inner ears of neonatal Ush1c c.216G>A mice, we find recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.
Hearing impairment is the most common sensory disorder, with congenital hearing
impairment present in ~1 in 1000 newborns1,
and yet there is no cellular cure for deafness. Hereditary deafness is often mediated by the
developmental failure or degeneration of cochlear hair cells2. Until now, it was not known whether such congenital failures could be mitigated by
therapeutic intervention3-5. Here we show that hearing and vestibular function can be rescued in a mouse model
of human hereditary deafness. An antisense oligonucleotide (ASO) was used to correct defective
pre–mRNA splicing of transcripts from the mutated
USH1C.216G>A gene, which causes human Usher syndrome
(Usher), the leading genetic cause of combined deafness and blindness6,7. Treatment of neonatal mice with a
single systemic dose of ASO partially corrects USH1C.216G>A splicing,
increases protein expression, improves stereocilia organization in the cochlea, and rescues cochlear
hair cells, vestibular function and hearing in mice. Our results demonstrate the therapeutic
potential of ASOs in the treatment of deafness and provide evidence that congenital deafness can be
effectively overcome by treatment early in development to correct gene expression.
SUMMARYUsher syndrome is the most prevalent cause of hereditary deaf-blindness, characterized by congenital sensorineural hearing impairment and progressive photoreceptor degeneration beginning in childhood or adolescence. Diagnosis and management of this disease are complex, and the molecular changes underlying sensory cell impairment remain poorly understood. Here we characterize two zebrafish models for a severe form of Usher syndrome, Usher syndrome type 1C (USH1C): one model is a mutant with a newly identified ush1c nonsense mutation, and the other is a morpholino knockdown of ush1c. Both have defects in hearing, balance and visual function from the first week of life. Histological analyses reveal specific defects in sensory cell structure that are consistent with these behavioral phenotypes and could implicate Müller glia in the retinal pathology of Usher syndrome. This study shows that visual defects associated with loss of ush1c function in zebrafish can be detected from the onset of vision, and thus could be applicable to early diagnosis for USH1C patients.
Usher syndrome is the leading cause of combined deaf-blindness, but the molecular mechanisms underlying the auditory and visual impairment are poorly understood. Usher I is characterized by profound congenital hearing loss, vestibular dysfunction and progressive retinitis pigmentosa beginning in early adolescence. Using the c.216G>A cryptic splice site mutation in exon 3 of the USH1C gene found in Acadian Usher I patients in Louisiana, we constructed the first mouse model that develops both deafness and retinal degeneration. The same truncated mRNA transcript found in Usher 1C patients is found in the cochleae and retinas of these knock-in mice. Absent auditory-evoked brainstem responses indicated that the mutant mice are deaf at one month of age. Cochlear histology showed disorganized hair cell rows, abnormal bundles, and loss of both inner and outer hair cells in the middle turns and at the base. Retinal dysfunction as evident by an abnormal electroretinogram was seen as early as 1 month of age, with progressive loss of rod photoreceptors between 6 and 12 months of age. This knock-in mouse reproduces the dual sensory loss of human Usher I, providing a novel resource to study the disease mechanism and the development of therapies.
Microarray analysis of antral biopsies from patients with and without H. pylori infection revealed differential expression of metal regulatory, immunity and inflammation-related genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.