In early Caenorhabditis elegans embryos, asymmetric cell divisions produce descendants with asynchronous cell cycle times. To investigate the relationship between cell cycle regulation and pattern formation, we have identified a collection of embryonic-lethal mutants in which cell divisions are delayed and cell fate patterns are abnormal. In div (for division delayed) mutant embryos, embryonic cell divisions are delayed but remain asynchronous. Some div mutants produce well-differentiated cell types, but they frequently lack the endodermal and mesodermal cell fates normally specified by a transcriptional activator called SKN-1. We show that mislocalization of PIE-1, a negative regulator of SKN-1, prevents the specification of endoderm and mesoderm in div-1 mutant embryos. In addition to defects in the normally asymmetric distribution of PIE-1, div mutants also exhibit other losses of asymmetry during early embryonic cleavages. The daughters of normally asymmetric divisions are nearly equal in size, and cytoplasmic P-granules are not properly localized to germline precursors in div mutant embryos. Thus the proper timing of cell division appears to be important for multiple aspects of asymmetric cell division. One div gene, div-1, encodes the B subunit of the DNA polymerase alpha-primase complex. Reducing the function of other DNA replication genes also results in a delayed division phenotype and embryonic lethality. Thus the other div genes we have identified are likely to encode additional components of the DNA replication machinery in C. elegans.
Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain-containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein-coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.
Advances in genomics and next-generation sequencing have provided clinical researchers with unprecedented opportunities to understand the molecular basis of human genetic disorders. This abundance of information places new requirements on traditional disease models, which have the potential to be used to confirm newly identified pathogenic mutations and test the efficacy of emerging therapies. The unique attributes of zebrafish are being increasingly leveraged to create functional disease models, facilitate drug discovery, and provide critical scientific bases for the development of new clinical tools for the diagnosis and treatment of human disease. In this short review and the accompanying poster, we highlight a few illustrative examples of the applications of the zebrafish model to the study of human health and disease.
Proper spindle positioning is essential for spatial control of cell division. Here, we show that zyg-8 plays a key role in spindle positioning during asymmetric division of one-cell stage C. elegans embryos by promoting microtubule assembly during anaphase. ZYG-8 harbors a kinase domain and a domain related to Doublecortin, a microtubule-associated protein (MAP) affected in patients with neuronal migration disorders. Sequencing of zyg-8 mutant alleles demonstrates that both domains are essential for function. ZYG-8 binds to microtubules in vitro, colocalizes with microtubules in vivo, and promotes stabilization of microtubules to drug or cold depolymerization in COS-7 cells. Our findings demonstrate that ZYG-8 is a MAP crucial for proper spindle positioning in C. elegans, and indicate that the function of the Doublecortin domain in modulating microtubule dynamics is conserved across metazoan evolution.
In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.