In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms.
Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.
Biomaterial scaffolds are fundamental components of strategies aimed at engineering a wide range of tissues. Scaffolds possessing uniform, oriented microtubular architectures could be ideal for multiple tissues, but are challenging to produce. Therefore, we developed hydrogel scaffolds possessing regular, tubular microstructures from self-assembled copper-capillary alginate gel (CCAG). To abrogate the rapid dissolution of CCAG in cell culture media, we treated it with oligochitosan and created a stable oligochitosan-CCAG (OCCAG) polyelectrolyte complex. Fourier transform infrared spectroscopy confirmed polyelectrolyte complexation between alginate and oligochitosan. OCCAG retained capillary morphology, shrank anisotropically in bulk, lost Cu(2+) ions, and maintained (71.9 +/- 5.65)% of its mass in cell culture media. Next, we seeded mouse embryonic stem (ES) cells within OCCAG scaffolds, and examined cell morphology and quantified cell growth and viability over four days. ES cells were guided to form cylindrical structures of staggered cells within scaffold capillaries. Analysis of the total cells recovered from the scaffolds revealed exponential cell growth (normalized to day 0) that was statistically similar to gelatinized-plate controls. OCCAG-cultured ES cell viability was also not significantly different from controls at day 4. CCAG-derived scaffolds can therefore serve as a unique platform for stem cell-based tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.