The study of naturalistic social behavior requires quantification of animals’ interactions. This is generally done through manual annotation—a highly time-consuming and tedious process. Recent advances in computer vision enable tracking the pose (posture) of freely behaving animals. However, automatically and accurately classifying complex social behaviors remains technically challenging. We introduce the Mouse Action Recognition System (MARS), an automated pipeline for pose estimation and behavior quantification in pairs of freely interacting mice. We compare MARS’s annotations to human annotations and find that MARS’s pose estimation and behavior classification achieve human-level performance. We also release the pose and annotation datasets used to train MARS to serve as community benchmarks and resources. Finally, we introduce the Behavior Ensemble and Neural Trajectory Observatory (BENTO), a graphical user interface for analysis of multimodal neuroscience datasets. Together, MARS and BENTO provide an end-to-end pipeline for behavior data extraction and analysis in a package that is user-friendly and easily modifiable.
The study of social behavior requires scoring the animals’ interactions. This is generally done by hand— a time consuming, subjective, and expensive process. Recent advances in computer vision enable tracking the pose (posture) of freely-behaving laboratory animals automatically. However, classifying complex social behaviors such as mounting and attack remains technically challenging. Furthermore, the extent to which expert annotators, possibly from different labs, agree on the definitions of these behaviors varies. There is a shortage in the neuroscience community of benchmark datasets that can be used to evaluate the performance and reliability of both pose estimation tools and manual and automated behavior scoring.We introduce the Mouse Action Recognition System (MARS), an automated pipeline for pose estimation and behavior quantification in pairs of freely behaving mice. We compare MARS’s annotations to human annotations and find that MARS’s pose estimation and behavior classification achieve human-level performance. As a by-product we characterize the inter-expert variability in behavior scoring. The two novel datasets used to train MARS were collected from ongoing experiments in social behavior, and identify the main sources of disagreement between annotators. They comprise 30,000 frames of manual annotated mouse poses and over 14 hours of manually annotated behavioral recordings in a variety of experimental preparations. We are releasing this dataset alongside MARS to serve as community benchmarks for pose and behavior systems. Finally, we introduce the Behavior Ensemble and Neural Trajectory Observatory (Bento), a graphical interface that allows users to quickly browse, annotate, and analyze datasets including behavior videos, pose estimates, behavior annotations, audio, and neural recording data. We demonstrate the utility of MARS and Bento in two use cases: a high-throughput behavioral phenotyping study, and exploration of a novel imaging dataset. Together, MARS and Bento provide an end-to-end pipeline for behavior data extraction and analysis, in a package that is user-friendly and easily modifiable.
Recently developed methods for video analysis, especially models for pose estimation and behavior classification, are transforming behavioral quantification to be more precise, scalable, and reproducible in fields such as neuroscience and ethology. These tools overcome long-standing limitations of manual scoring of video frames and traditional ‘center of mass’ tracking algorithms to enable video analysis at scale. The expansion of open-source tools for video acquisition and analysis has led to new experimental approaches to understand behavior. Here, we review currently available open-source tools for video analysis and discuss how to set up these methods for labs new to video recording. We also discuss best practices for developing and using video analysis methods, including community-wide standards and critical needs for the open sharing of datasets and code, more widespread comparisons of video analysis methods, and better documentation for these methods especially for new users. We encourage broader adoption and continued development of these tools, which have tremendous potential for accelerating scientific progress in understanding the brain and behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.