Taste buds are innervated by neurons whose cell bodies reside in cranial sensory ganglia. Studies on the functional properties and connectivity of these neurons are hindered by the lack of markers to define their molecular identities and classes. The mouse geniculate ganglion contains chemosensory neurons innervating lingual and palatal taste buds and somatosensory neurons innervating the pinna. Here, we report single cell RNA sequencing of geniculate ganglion neurons. Using unbiased transcriptome analyses, we show a pronounced separation between two major clusters which, by anterograde labeling, correspond to gustatory and somatosensory neurons. Among the gustatory neurons, three subclusters are present, each with its own complement of transcription factors and neurotransmitter response profiles. The smallest subcluster expresses both gustatory- and mechanosensory-related genes, suggesting a novel type of sensory neuron. We identify several markers to help dissect the functional distinctions among gustatory neurons and address questions regarding target interactions and taste coding.
How taste buds detect NaCl remains poorly understood. Among other problems, applying taste-relevant concentrations of NaCl (50-500 mM) onto isolated taste buds or cells exposes them to unphysiological (hypo/hypertonic) conditions. To overcome these limitations, we used the anterior tongue of male and female mice to implement a slice preparation in which fungiform taste buds are in a relatively intact tissue environment and stimuli are limited to the taste pore. Taste-evoked responses were monitored using confocal Ca 2ϩ imaging via GCaMP3 expressed in Type 2 and Type 3 taste bud cells. NaCl evoked intracellular mobilization of Ca 2ϩ in the apical tips of a subset of taste cells. The concentration dependence and rapid adaptation of NaCl-evoked cellular responses closely resembled behavioral and afferent nerve responses to NaCl. Importantly, taste cell responses were not inhibited by the diuretic, amiloride. Post hoc immunostaining revealed that Ͼ80% of NaCl-responsive taste bud cells were of Type 2. Many NaCl-responsive cells were also sensitive to stimuli that activate Type 2 cells but never to stimuli for Type 3 cells. Ion substitutions revealed that amiloride-insensitive NaCl responses depended on Cl Ϫ rather than Na ϩ. Moreover, choline chloride, an established salt taste enhancer, was equally effective a stimulus as sodium chloride. Although the apical transducer for Cl Ϫ remains unknown, blocking known chloride channels and cotransporters had little effect on NaCl responses. Together, our data suggest that chloride, an essential nutrient, is a key determinant of taste transduction for amiloride-insensitive salt taste.
Understanding the role of neurons in encoding and transmitting information is a major goal in neuroscience. This requires insight on the data-rich neuronal spiking patterns combined, ideally, with morphology and genetic identity. Electrophysiologists have long experienced the trade-offs between anatomically-accurate single-cell recording techniques and high-density multi-cellular recording methods with poor anatomical correlations. In this study, we present a novel technique that combines large-scale micro-electrode array recordings with genetic identification and the anatomical location of the retinal ganglion cell soma. This was obtained through optogenetic stimulation and subsequent confocal imaging of genetically targeted retinal ganglion cell sub-populations in the mouse. With the many molecular options available for optogenetic gene expression, we view this method as a versatile tool for matching function to genetic classifications, which can be extended to include morphological information if the density of labelled cells is at the correct level.
Early stages of glaucoma and optic neuropathies are thought to show inner retina remodeling and functional changes of retinal ganglion cells (RGCs) before they die. To assess RGC functional plasticity, we investigated the contrast-gain control properties of the pattern electroretinogram (PERG), a sensitive measure of RGC function, as an index of spatio-temporal integration occurring in the inner retina circuitry subserving PERG generators. We studied the integrative properties of the PERG in mice exposed to different conditions of neurotrophic support. We also investigated the effect of genotypic differences among mouse strains with different susceptibility to glaucoma (C57BL/6J, DBA/2J, DBA/2.Gpnmb+). Results show that the integrative properties of the PERG recorded in the standard C57BL/6J inbred mouse strain are impaired after deficit of neurotrophic support and partially restored after exogenous neurotrophic administration. Changes in PERG amplitude, latency, and contrast-dependent responses differ between mouse strains with different susceptibility to glaucoma. Results represent a proof of concept that the PERG could be used as a tool for in-vivo monitoring of RGC functional plasticity before RGC death, the effect of neuroactive treatments, as well as for high-throughput tool for phenotypic screening of different mouse genotypes.
In mammalian taste buds, Type I cells comprise half of all cells. These are termed “glial-like” based on morphologic and molecular features, but there are limited studies describing their function. We tested whether Type I cells sense chemosensory activation of adjacent chemosensory (i.e., Types II and III) taste bud cells, similar to synaptic glia. UsingGad2;;GCaMP3 mice of both sexes, we confirmed by immunostaining that, within taste buds, GCaMP expression is predominantly in Type I cells (with no Type II and ≈28% Type III cells expressing weakly). In dissociated taste buds, GCaMP+ Type I cells responded to bath-applied ATP (10-100 μm) but not to 5-HT (transmitters released by Type II or III cells, respectively). Type I cells also did not respond to taste stimuli (5 μmcycloheximide, 1 mmdenatonium). In lingual slice preparations also, Type I cells responded to bath-applied ATP (10-100 μm). However, when taste buds in the slice were stimulated with bitter tastants (cycloheximide, denatonium, quinine), Type I cells responded robustly. Taste-evoked responses of Type I cells in the slice preparation were significantly reduced by desensitizing purinoceptors or by purinoceptor antagonists (suramin, PPADS), and were essentially eliminated by blocking synaptic ATP release (carbenoxolone) or degrading extracellular ATP (apyrase). Thus, taste-evoked release of afferent ATP from type II chemosensory cells, in addition to exciting gustatory afferent fibers, also activates glial-like Type I taste cells. We speculate that Type I cells sense chemosensory activation and that they participate in synaptic signaling, similarly to glial cells at CNS tripartite synapses.SIGNIFICANCE STATEMENTMost studies of taste buds view the chemosensitive excitable cells that express taste receptors as the sole mediators of taste detection and transmission to the CNS. Type I “glial-like” cells, with their ensheathing morphology, are mostly viewed as responsible for clearing neurotransmitters and as the “glue” holding the taste bud together. In the present study, we demonstrate that, when intact taste buds respond to their natural stimuli, Type I cells sense the activation of the chemosensory cells by detecting the afferent transmitter. Because Type I cells synthesize GABA, a known gliotransmitter, and cognate receptors are present on both presynaptic and postsynaptic elements, Type I cells may participate in GABAergic synaptic transmission in the manner of astrocytes at tripartite synapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.