Tyrosine kinase receptors represent targets of great interest for cancer therapy. Here we demonstrate, for the first time, the importance of the orphan tyrosine kinase receptor, ROR2, in melanoma progression. Using melanoma tissue microarrays we show that ROR2 is expressed predominantly in metastatic melanoma. Because ROR2 has been shown to specifically interact with the non-canonical Wnt ligand, Wnt5A, this corroborates our previous data implicating Wnt5A as a mediator of melanoma metastasis. We show here that increases in Wnt5A cause increases in ROR2 expression, as well as the PKC-dependent, clathrin-mediated internalization of ROR2. WNT5A knockdown by siRNA decreases ROR2 expression, but silencing of ROR2 has no effect on WNT5A levels. ROR2 knockdown does, however, result in a decrease in signaling downstream of Wnt5A. Using in vitro and in vivo metastasis assays we demonstrate that ROR2 is necessary for the Wnt5A-mediated metastasis of melanoma cells. These data imply that ROR2 may represent a novel target for melanoma therapy.
The study of FOP, a disabling genetic disorder of progressive heterotopic ossification, is hampered by the lack of readily available connective tissue progenitor cells. We isolated such cells from discarded primary teeth of patients with FOP and controls and discovered dysregulation of BMP signaling and rapid osteoblast differentiation in FOP cells compared with control cells.Introduction: Fibrodysplasia ossificans progressiva (FOP), the most disabling condition of progressive heterotopic ossification in humans, is caused by a recurrent heterozygous missense mutation in activin receptor IA (ACVR1), a bone morphogenetic protein (BMP) type I receptor, in all classically affected individuals. A comprehensive understanding of FOP has been limited, in part, by a lack of readily available connective tissue progenitor cells in which to study the molecular pathology of this disorder. Materials and Methods:We derived connective tissue progenitor cells from discarded primary teeth (SHED cells) of patients with FOP and controls and examined BMP signaling and osteogenic differentiation in these cells. Results: SHED cells transmitted BMP signals through both the SMAD and p38 mitogen-activated protein kinase (MAPK) pathways and responded to BMP4 treatment by inducing BMP responsive genes. FOP cells showed ligand-independent BMP signaling and ligand-dependent hyper-responsiveness to BMP stimulation. Furthermore, FOP cells showed more rapid differentiation to an osteogenic phenotype than control cells. Conclusions: This is the first study of BMP signaling and osteogenic differentiation in connective tissue progenitor cells from patients with FOP. Our data strongly support both basal and ligand-stimulated dysregulation of BMP signaling consistent with in silico studies of the mutant ACVR1 receptor in this condition. This study substantially extends our understanding of dysregulated BMP signaling in a progenitor cell population relevant to the pathogenesis of this catastrophic disorder of progressive ectopic ossification.
Eating a “Westernized” diet high in fat and sugar leads to weight gain and numerous health problems, including the development of type 2 diabetes mellitus (T2DM). Rodent studies have shown that resveratrol supplementation reduces blood glucose levels, preserves β-cells in islets of Langerhans, and improves insulin action. Although rodent models are helpful for understanding β-cell biology and certain aspects of T2DM pathology, they fail to reproduce the complexity of the human disease as well as that of nonhuman primates. Rhesus monkeys were fed a standard diet (SD), or a high-fat/high-sugar diet in combination with either placebo (HFS) or resveratrol (HFS+Resv) for 24 months, and pancreata were examined before overt dysglycemia occurred. Increased glucose-stimulated insulin secretion and insulin resistance occurred in both HFS and HFS+Resv diets compared with SD. Although islet size was unaffected, there was a significant decrease in β-cells and an increase in α-cells containing glucagon and glucagon-like peptide 1 with HFS diets. Islets from HFS+Resv monkeys were morphologically similar to SD. HFS diets also resulted in decreased expression of essential β-cell transcription factors forkhead box O1 (FOXO1), NKX6–1, NKX2–2, and PDX1, which did not occur with resveratrol supplementation. Similar changes were observed in human islets where the effects of resveratrol were mediated through Sirtuin 1. These findings have implications for the management of humans with insulin resistance, prediabetes, and diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.