NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21-expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomeres and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy.
The canine disease, X-linked progressive retinal atrophy (XLPRA), is similar to human RP3, an X-linked form of retinitis pigmentosa, and maps to the same region in the X chromosome. Analysis of the physical map of the XLPRA and RP3 intervals shows a high degree of conservation in terms of genes and their order. We have found different mutations in exon ORF15 of the RPGR gene in two distinct mutant dog strains (XLPRA1, XLPRA2). Microdeletions resulting in a premature stop or a frameshift mutation result in very different retinal phenotypes, which are allele-specific and consistent for each mutation. The phenotype associated with the frameshift mutation in XLPRA2 is very severe and manifests during retinal development; the phenotype resulting from the XLPRA1 nonsense mutation is expressed only after normal photoreceptor morphogenesis. Splicing of RPGR mRNA transcripts in retina is complex, and either exon ORF15 or exon 19 can be a terminal exon. The retina-predominant transcript contains ORF15 as a terminal exon, and is expressed in normal and mutant retinas. The frameshift mutation dramatically alters the deduced amino acid sequence, and the protein aggregates in the endoplasmic reticulum of transfected cells. The cellular and molecular results in the two canine RPGR exon ORF15 mutations have implications for understanding the phenotypic variability found in human RP3 families that carry similar mutations.
Strains of red fox (Vulpes vulpes) with markedly different behavioural phenotypes have been developed in the famous long-term selective breeding programme known as the Russian farm-fox experiment. Here we sequenced and assembled the red fox genome and re-sequenced a subset of foxes from the tame, aggressive and conventional farm-bred populations to identify genomic regions associated with the response to selection for behaviour. Analysis of the re-sequenced genomes identified 103 regions with either significantly decreased heterozygosity in one of the three populations or increased divergence between the populations. A strong positional candidate gene for tame behaviour was highlighted: SorCS1, which encodes the main trafficking protein for AMPA glutamate receptors and neurexins and suggests a role for synaptic plasticity in fox domestication. Other regions identified as likely to have been under selection in foxes include genes implicated in human neurological disorders, mouse behaviour and dog domestication. The fox represents a powerful model for the genetic analysis of affiliative and aggressive behaviours that can benefit genetic studies of behaviour in dogs and other mammals, including humans.
An open reading frame (ORF) with homology to interleukin-10 (IL-10) has been identified in rhesus cytomegalovirus (RhCMV). The IL-10-like protein is generated from a multispliced, polyadenylated early gene transcript encompassing part of the corresponding UL111A ORF of human CMV (HCMV). Immunological analyses confirm expression of the IL-10-like protein both in tissue culture and in RhCMV-infected rhesus macaques. Conserved ORFs were subsequently identified in human, baboon, and African green monkey CMV, and a fully processed transcript has been mapped in fibroblasts infected with the Towne strain of HCMV. The conservation of this previously unrecognized ORF suggests that the protein may play an essential role in primate CMV persistence and pathogenesis.
Background: While the review of radiotherapy treatment plans and charts by a medical physicist is a key component of safe, high-quality care, very few specific recommendations currently exist for this task. Aims: The goal of TG-275 is to provide practical, evidence-based recommendations on physics plan and chart review for radiation therapy. While this report is aimed mainly at medical physicists, others may benefit including dosimetrists, radiation therapists, physicians and other professionals interested in quality management. Methods: The scope of the report includes photon/electron external beam radiotherapy (EBRT), proton radiotherapy, as well as high-dose rate (HDR) brachytherapy for gynecological applications (currently the highest volume brachytherapy service in most practices). The following review time points are considered: initial review prior to treatment, weekly review, and end-of-treatment review. The Task Group takes a risk-informed approach to developing recommendations. A failure mode and effects analysis was performed to determine the highest-risk aspects of each process. In the case of photon/electron EBRT, a survey of all American Association of Physicists in Medicine (AAPM) members was also conducted to determine current practices. A draft of this report was provided to the full AAPM membership for comment through a 3-week open-comment period, and the report was revised in response to these comments.Results: The highest-risk failure modes included 112 failure modes in photon/electron EBRT initial review, 55 in weekly and end-of-treatment review, 24 for initial review specific to proton therapy, and 48 in HDR brachytherapy. A 103-question survey on current practices was released to all AAPM members who self-reported as working in the radiation oncology field. The response rate was 33%. The survey data and risk data were used to inform recommendations. Discussion: Tables of recommended checks are presented and recommendations for best practice are discussed. Suggestions to software vendors are also provided. Conclusions: TG-275 provides specific recommendations for physics plan and chart review which should enhance the safety and quality of care for patients receiving radiation treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.