Neural prostheses translate neural activity from the brain into control signals for guiding prosthetic devices, such as computer cursors and robotic limbs, and thus offer disabled patients greater interaction with the world. However, relatively low performance remains a critical barrier to successful clinical translation; current neural prostheses are considerably slower with less accurate control than the native arm. Here we present a new control algorithm, the recalibrated feedback intention-trained Kalman filter (ReFIT-KF), that incorporates assumptions about the nature of closed loop neural prosthetic control. When tested with rhesus monkeys implanted with motor cortical electrode arrays, the ReFIT-KF algorithm outperforms existing neural prostheses in all measured domains and halves acquisition time. This control algorithm permits sustained uninterrupted use for hours and generalizes to more challenging tasks without retraining. Using this algorithm, we demonstrate repeatable high performance for years after implantation across two monkeys, thereby increasing the clinical viability of neural prostheses.
BackgroundBreast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes–luminal A, luminal B, ERBB2-associated, basal-like and normal-like–with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes.MethodsWhole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression.FindingsTranscriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem/progenitor-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 multi-copy deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel candidate breast cancer genes.ConclusionsOverall, breast cancer cell lines were genetically more complex than tumors, but retained expression patterns with relevance to the luminal-basal subtype distinction. The compendium of molecular profiles defines cell lines suitable for investigations of subtype-specific pathobiology, cancer stem cell biology, biomarkers and therapies, and provides a resource for discovery of new breast cancer genes.
Neuroscience is experiencing a data revolution in which simultaneous recording of many hundreds or thousands of neurons is revealing structure in population activity that is not apparent from single-neuron responses. This structure is typically extracted from trial-averaged data. Single-trial analyses are challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. Here we introduce Latent Factor Analysis via Dynamical Systems (LFADS), a deep learning method to infer latent dynamics from single-trial neural spiking data. LFADS uses a nonlinear dynamical system (a recurrent neural network) to infer the dynamics underlying observed population activity and to extract 'de-noised' single-trial firing rates from neural spiking data. We apply LFADS to a variety of monkey and human motor cortical datasets, demonstrating its ability to predict observed behavioral variables with unprecedented accuracy, extract precise estimates of neural dynamics on single trials, infer perturbations to those dynamics that correlate with behavioral choices, and combine data from non-overlapping recording sessions (spanning months) to improve inference of underlying dynamics. In summary, LFADS leverages all observations of a neural population's activity to accurately model its dynamics on single trials, opening the door to a detailed understanding of the role of dynamics in performing computation and ultimately driving behavior.Increasing evidence suggests that in many brain areas, such as the motor and prefrontal cortices, the activity of large populations of neurons, termed the neural population state, is often well-described by low-dimensional dynamics [e.g. (Afshar et al. 2011; Harvey, Coen, and Tank 2012; Kaufman et al. 2014;Sadtler et al. 2014;Kobak et al. 2016a) ]. Recovering these dynamics on single trials is essential for illuminating the relationship between neural population activity and behavior, and for advancing therapeutic neurotechnologies such as closed-loop deep brain stimulation and brain-machine interfaces. However, recovering population dynamics All rights reserved. No reuse allowed without permission.(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint . http://dx.doi.org/10.1101/152884 doi: bioRxiv preprint first posted online Jun. 20, 2017; on single trials is difficult due to trial-to-trial variability (e.g. in behavior or arousal) and fluctuations in the spiking of individual neurons. Even with dramatic increases in the numbers of neurons that can be simultaneously recorded using multichannel electrode arrays or optical imaging, accurately recovering population dynamics from single trials remains a significant challenge for data-analysis methods.Standard analyses sacrifice single-trial information for the sake of better estimates of trial-averaged neural states (Ahrens et al. 2012; Kobak et al. 2016b) . Techniques for extrac...
Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.