Trade in live plants has been recognized worldwide as an important invasion pathway for non‐native plant pests. Such pests can have severe economic and ecological consequences. Nearly 70% of damaging forest insects and pathogens established in the US between 1860 and 2006 most likely entered on imported live plants. The current regulation of plant imports is outdated and needs to balance the impacts of pest damage, the expense of mitigation efforts, and the benefits of live plant importation. To inform these discussions, we document large increases in the volume and value of plant imports over the past five decades and explain recent and proposed changes to plant import regulations. Two data sources were used to estimate the infestation rate of regulated pests in live plant shipments entering the US, thus allowing evaluation of the efficacy of the current port inspection process.
The Burkholderia cepacia complex (Bcc) consists of several species of closely related and extremely versatile gram-negative bacteria found naturally in soil, water, and the rhizosphere of plants. Strains of Bcc have been used in biological control of plant diseases and bioremediation, while some strains are plant pathogens or opportunistic pathogens of humans with cystic fibrosis. The ecological versatility of these bacteria is likely due to their unusually large genomes, which are often comprised of several (typically two or three) large replicons, as well as their ability to use a large array of compounds as sole carbon sources. The original species B. cepacia has been split into eight genetic species (genomovars), including five named species, but taxonomic distinctions have not enabled biological control strains to be clearly distinguished from human pathogenic strains. This has led to a reassessment of the risk of several strains registered by the U.S. Environmental Protection Agency for biological control. We review the biology of Bcc bacteria, especially how our growing knowledge of Bcc ecology and pathogenicity might be used in risk assessment. The capability of this bacterial complex to cause disease in plants and humans, as well as to control plant diseases, affords a rare opportunity to explore traits that may function in all three environments.
Maize (Zea mays L.) growth at low soil P levels is affected both by inherent physiological factors as well as interactions with soil microbes. The objectives of this study were (i) to quantify differences among maize inbred lines for growth at low P and response to mycorrhizal fungi, and (ii) to identify quantitative trait loci (QTL) controlling these traits in a B73 × Mo17 recombinant inbred population. Shoot dry weight and root volume were measured in the greenhouse after 6 wk of growth in a factorial experiment of 28 inbred maize lines using treatments of low vs. high P and mycorrhizal vs. nonmycorrhizal treatments. Shoot dry weight for the low P treatment in the absence of mycorrhizae ranged from 0.56 to 3.15 g. Mycorrhizal responsiveness based on shoot dry weight ranged from 106 to 800%. Shoot dry weight in the low P–nonmycorrhizal treatment was highly negatively correlated with mycorrhizal responsiveness. Plants grown at high P in the presence of mycorrhizae accumulated only 88% of the biomass of plants grown at high P in the absence of mycorrhizae, indicating that mycorrhizae can reduce plant growth when not contributing to the symbiosis. Percentage of root colonization was not correlated with mycorrhizal responsiveness. B73 and Mo17 were among the extremes for growth at low P and mycorrhizal responsiveness, and a B73 × Mo17 population of 197 recombinant inbred lines was used to detect QTL for growth at low P and mycorrhizal responsiveness. Three QTL were identified which controlled growth at low P in the absence of mycorrhizae based on shoot weight and one QTL which controlled mycorrhizal responsiveness. This study indicates that there is substantial variation among maize lines for growth at low P and response to mycorrhizal fungi. This variation could be harnessed to develop cultivars for regions of the world with P deficiency and for reduced‐input production systems.
Phytophthora ramorum is an invasive pathogen in some mixed-hardwood forests in California and southwestern Oregon, where it causes sudden oak death (SOD) on some members of Fagaceae, ramorum shoot dieback on some members of Ericaceae and conifers, and ramorum leaf blight on diverse hosts. We compared symptoms of P. ramorum infection resulting from four different artificial inoculation techniques with the symptoms of natural infection on 49 western forest trees and shrubs; 80% proved susceptible to one degree or another. No single inoculation method predicted the full range of symptoms observed in the field, but whole plant dip came closest. Detached-leaf-dip inoculation provided a rapid assay and permitted a reasonable assessment of susceptibility to leaf blight. Both leaf age and inoculum dose affected detached-leaf assays. SOD and dieback hosts often developed limited leaf symptoms, although the pattern of midrib and petiole necrosis was distinctive. Stem-wound inoculation of seedlings correlated with field symptoms for several hosts. The results suggested that additional conifer species may be damaged in the field. Log inoculation provided a realistic test of susceptibility to SOD, but was cumbersome and subject to seasonal variability. Pacific rhododendron, salmonberry, cascara, and poison oak were confirmed as hosts by completing Koch's postulates. Douglas-fir was most susceptible to shoot dieback shortly after budburst, with infection occurring at the bud.
Summary This review comprises both well‐known and recently described Phytophthora species and concentrates on Phytophthora–woody plant interactions. First, comprehensive data on infection strategies are presented which were the basis for three models that explain invasion and spread of Phytophthora pathogens in different woody host plants. The first model describes infection of roots, the second concentrates on invasion of the trunk, and the last one summarizes infection and invasion of host plants via leaves. On the basis of morphological, physiological, biochemical and molecular data, scenarios are suggested which explain the sequences of reactions that occur in susceptible and tolerant plants following infections of roots or of stem bark. Particular emphasis is paid to the significance of Phytophthora elicitins for such host–pathogen interactions. The overall goal is to shed light on the sequences of pathogenesis to better understand how Phytophthora pathogens harm their host plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.