The reliability and validity of traditional taxonomies are limited by arbitrary boundaries between psychopathology and normality, often unclear boundaries between disorders, frequent disorder co-occurrence, heterogeneity within disorders, and diagnostic instability. These taxonomies went beyond evidence available on the structure of psychopathology and were shaped by a variety of other considerations, which may explain the aforementioned shortcomings. The Hierarchical Taxonomy Of Psychopathology (HiTOP) model has emerged as a research effort to address these problems. It constructs psychopathological syndromes and their components/subtypes based on the observed covariation of symptoms, grouping related symptoms together and thus reducing heterogeneity. It also combines co-occurring syndromes into spectra, thereby mapping out comorbidity. Moreover, it characterizes these phenomena dimensionally, which addresses boundary problems and diagnostic instability. Here, we review the development of the HiTOP and the relevant evidence. The new classification already covers most forms of psychopathology. Dimensional measures have been developed to assess many of the identified components, syndromes, and spectra. Several domains of this model are ready for clinical and research applications. The HiTOP promises to improve research and clinical practice by addressing the aforementioned shortcomings of traditional nosologies. It also provides an effective way to summarize and convey information on risk factors, etiology, pathophysiology, phenomenology, illness course, and treatment response. This can greatly improve the utility of the diagnosis of mental disorders. The new classification remains a work in progress. However, it is developing rapidly and is poised to advance mental health research and care significantly as the relevant science matures.
The reliability and validity of traditional taxonomies are limited by arbitrary boundaries between psychopathology and normality, often unclear boundaries between disorders, frequent disorder co-occurrence, heterogeneity within disorders, and diagnostic instability. These taxonomies went beyond evidence available on the structure of psychopathology and were shaped by a variety of other considerations, which may explain the aforementioned shortcomings. The Hierarchical Taxonomy Of Psychopathology (HiTOP) model has emerged as a research effort to address these problems. It constructs psychopathological syndromes and their components/subtypes based on the observed covariation of symptoms, grouping related symptoms together and thus reducing heterogeneity. It also combines co-occurring syndromes into spectra, thereby mapping out comorbidity. Moreover, it characterizes these phenomena dimensionally, which addresses boundary problems and diagnostic instability. Here, we review the development of the HiTOP and the relevant evidence. The new classification already covers most forms of psychopathology. Dimensional measures have been developed to assess many of the identified components, syndromes, and spectra. Several domains of this model are ready for clinical and research applications. The HiTOP promises to improve research and clinical practice by addressing the aforementioned shortcomings of traditional nosologies. It also provides an effective way to summarize and convey information on risk factors, etiology, pathophysiology, phenomenology, illness course, and treatment response. This can greatly improve the utility of the diagnosis of mental disorders. The new classification remains a work in progress. However, it is developing rapidly and is poised to advance mental health research and care significantly as the relevant science matures.
We discuss problems the null hypothesis significance testing (NHST) paradigm poses for replication and more broadly in the biomedical and social sciences as well as how these problems remain unresolved by proposals involving modified p-value thresholds, confidence intervals, and Bayes factors. We then discuss our own proposal, which is to abandon statistical significance. We recommend dropping the NHST paradigm-and the p-value thresholds intrinsic to it-as the default statistical paradigm for research, publication, and discovery in the biomedical and social sciences. Specifically, we propose that the p-value be demoted from its threshold screening role and instead, treated continuously, be considered along with currently subordinate factors (e.g., related prior evidence, plausibility of mechanism, study design and data quality, real world costs and benefits, novelty of finding, and other factors that vary by research domain) as just one among many pieces of evidence. We have no desire to "ban" p-values or other purely statistical measures. Rather, we believe that such measures should not be thresholded and that, thresholded or not, they should not take priority over the currently subordinate factors. We also argue that it seldom makes sense to calibrate evidence as a function of p-values or other purely statistical measures. We offer recommendations for how our proposal can be implemented in the scientific publication process as well as in statistical decision making more broadly.
Previous research using confirmatory factor analysis to model psychopathology comorbidity supported the hypothesis of a broad general factor (i.e., a “bifactor”; Holzinger & Swineford, 1937) of psychopathology in children, adolescents, and adults, with more specific higher-order internalizing and externalizing factors reflecting additional shared variance in symptoms (Lahey et al., 2012; Lahey, Van Hulle, Singh, Waldman, & Rathouz, 2011). The psychological nature of this general factor has not been explored, however. The current study tests a prediction derived from the spectrum hypothesis of personality and psychopathology, that variance in a general psychopathology bifactor overlaps substantially—at both phenotypic and genetic levels—with the dispositional trait of negative emotionality. Data on psychopathology symptoms and dispositional traits were collected from both parents and youth in a representative sample of 1,569 twin pairs (ages 9–17) from Tennessee. Predictions based on the spectrum hypothesis were supported, with variance in negative emotionality and the general factor overlapping substantially at both phenotypic and etiologic levels. Furthermore, stronger correlations were found between negative emotionality and the general psychopathology factor than among other dispositions and other psychopathology factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.