The National Institute for Occupational Safety and Health (NIOSH) conducted 21 field surveys in selected industries to characterize workers' exposures to hexavalent chromium-containing airborne particulate and to evaluate existing technologies for controlling these exposures. Hexavalent chromium Cr(VI) is a respiratory irritant and chronic inhalation may cause lung cancer. Primary evaluation methods included collection of full work shift, personal breathing-zone (PBZ) air samples for Cr(VI), measurement of ventilation system parameters, and documentation of processes and work practices. This study emphasized evaluation of engineering exposure control measures, so PBZ exposures were measured on the outside of personal protective equipment, for example, respirators. Field surveys were conducted in two chromium electroplating facilities, including one where full-shift PBZ exposures to Cr(VI) ranged from 3.0 to 16 times the 1 micro g/m(3)NIOSH recommended exposure limit (REL) despite several engineering controls on the plating tanks. At a painting and coating facility that used Cr(VI)-containing products, full-shift exposures of painters and helpers (2.4 to 55 micro g/m(3)) exceeded the REL, but LEV effectiveness was limited. Other operations evaluated included welding in construction; metal cutting operations on chromium-containing materials in ship breaking; chromate-paint removal with abrasive blasting; atomized alloy-spray coating; foundry operations; printing; and the manufacture of refractory brick, colored glass, prefabricated concrete products, and treated wood products. NIOSH researchers concluded that, in many of the evaluated processes, Cr(VI) exposures at or below the current NIOSH REL are achievable. However, for some processes, it is unclear whether controlling exposures to this range is consistently achievable without respirator use. Some operations involving the application of coatings and finishes may be among those most difficult to control to this range. Most operations judged to be moderately difficult to control to this range involve joining and cutting metals with relatively high chromium content. Nonetheless, exposures in a wide variety of other processes were judged more easily controllable to the current REL or below, or were found to be minimal, including some operations meeting the general descriptions named above but with different specific operating parameters producing lower Cr(VI) exposures.
Gaseous and particulate emissions from laser surgery are often controlled by the use of smoke evacuators. Thus it is important that factors affecting the performance of these evacuators be understood. In this study, a tracer gas technique was used to examine a number of factors affecting the performance of smoke evacuators, including evacuator flow rate, distance from the evacuator nozzle to the surgical site, and direction and speed of external air flow in relation to nozzle flow. The tracer gas technique allowed the release of emissions to be visualized with infrared imaging and also allowed the collection efficiency to be assessed quantitatively. The results were demonstrated with the use of a surgical laser system. It was found that the collection efficiency of the smoke evacuator was affected by all the factors studied. Increasing the evacuator flow rate allowed the collection of emissions under conditions in which lower evacuator flow rates had less efficient collection. The speed and direction of external air flow affected collection of emissions greatly. If the air flow was in the same direction as the nozzle flow, efficient collection of emissions at a distance from the emission release point was observed. However, at other angles relative to nozzle flow, the efficiency degraded rapidly with distance from the emission release site. With the use of the surgical laser system, at laser powers of 30 W, the tracer system predicted the collection of emissions. At 60 and 100 W of laser power, higher external air flows and greater attention to nozzle positioning were necessary. Based on the results of this study, conclusions are drawn on how to improve the collection efficiency of smoke evacuators used in laser surgery.
This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20–30 nm diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high aspect ratio particles were identified as being released from some activities. The EC concentration at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating and cutting. Various sampling methods all indicated different levels of CNTs from the activities, however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.
This paper discusses the evaluation of a facility that produces high quality engineered nanomaterials. These ENMs consist of various metals including iron, nickel, silver, manganese, and palladium. Although occupational exposure levels are not available for these metals, studies have indicated that it may be prudent to keep exposures to the nano-scale metal as low as possible. Previous In vitro studies indicated that in comparison with a material’s larger (parent) counterpart, nanomaterials can move easily through cell membranes and can cause severe toxic effects on human health. The in vitro studies showed that the toxicological effects specific to exposure to nanoscale nickel oxide and nickel have been found to be more inflammatory and toxic than larger-sized nickel particles and can decrease cell metabolic activity, arrest the G2-M cell cycle, and increase cell death. An in vitro study on exposure to iron nanoparticles indicated that the reactive oxygen species produced by exposure may increase cell permeability thereby increasing the potential for vascular movement. Much of the data available on palladium focus on dermal or ingestion exposure; the chronic effects are not well understood. Given the available limited data on the metals evaluated, caution is warranted. One should always keep in mind that the current OELs were not developed specifically for nanoscale particles. With limited data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source, to limit the potential for exposure. Evidence suggests that in general some nanomaterials can be more toxic than their macro-scale counterparts, and therefore caution is warranted. It appears that the personal protective equipment utilized by the employee was appropriate for this type of operation. It should be noted that the use of respiratory protection should not be used as sole protection for any worker, but providing a fit-tested respirator will serve to further decrease the potential for exposure. Instead, it is recommended to control the dispersion of product at the source using local exhaust ventilation, ventilated containment, or fume hoods. Data obtained from the direct reading instruments suggest that reactor cleanout increased the overall particle concentration in the immediate area. However, it does not appear that these concentrations affect areas outside of the production floor. As the distance between the reactor and the sample location increased, the observed particle number concentrations decreased, creating a concentration gradient with respect to the reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.