Database: The C. gracea KCS sequence information has been submitted to the EMBL ⁄ GenBank under accession number: bankit1110928.Keywords: 3-keto-acyl-CoA synthase, Cardamine graeca, Nervonic acid, Brassica carinata, Brassica napus, Arabidopsis thaliana, Health and Industry. SummaryNervonic acid 24:1 D15 (cis-tetracos-15-enoic acid) is a very long-chain monounsaturated fatty acid and exists in nature as an elongation product of oleic acid.There is an increasing interest in production of high nervonic acid oils for pharmaceutical, nutraceutical and industrial applications. Using a polymerase chain reaction approach, we have isolated a gene from Cardamine graeca L., which encodes a 3-ketoacyl-CoA synthase (KCS), the first component of the elongation complex involved in synthesis of nervonic acid. Expression of the Cardamine KCS in yeast resulted in biosynthesis of nervonic acid, which is not normally present in yeast cells.We transformed Arabidopsis and Brassica carinata with the Cardamine KCS under the control of the seed-specific promoter, napin. The T 3 generations of transgenic Arabidopsis and B. carinata plants expressing the Cardamine KCS showed that seed-specific expression resulted in relatively large comparative increases in nervonic acid proportions in Arabidopsis seed oil, and 15-fold increase in nervonic acid proportions in B. carinata seed oil. The highest nervonic acid level in transgenic B. carinata lines reached 44%, with only 6% of residual erucic acid. In contrast, similar transgenic expression of the Cardamine KCS in high erucic B. napus resulted in 30% nervonic acid but with 20% residual erucic acid. Experiments using the Lunaria KCS gene gave results similar to the latter. In both cases, the erucic acid content is too high for human or animal consumption. Thus, the Cardamine KCS: B. carinata high nervonic ⁄ highly reduced erucic transgenic seed oils will be the most suitable for testing in pharmaceutical ⁄ nutraceutical applications to improve human and animal health.
The fatty acid elongase [often designated FAE or b-(or 3-) ketoacyl-CoA synthase] is a condensing enzyme and is the first component of the elongation complex involved in synthesis of erucic acid (22:1) in seeds of garden nasturtium (Tropaeolum majus). Using a degenerate primers approach, a cDNA of a putative embryo FAE was obtained showing high homology to known plant elongases. This cDNA contains a 1,512-bp open reading frame that encodes a protein of 504 amino acids. A genomic clone of the nasturtium FAE was isolated and sequence analyses indicated the absence of introns. Northern hybridization showed the expression of this nasturtium FAE gene to be restricted to the embryo. Southern hybridization revealed the nasturtium b-ketoacyl-CoA synthase to be encoded by a small multigene family. To establish the function of the elongase homolog, the cDNA was introduced into two different heterologous chromosomal backgrounds (Arabidopsis and tobacco [Nicotiana tabacum]) under the control of a seed-specific (napin) promoter and the tandem 35S promoter, respectively. Seed-specific expression resulted in up to an 8-fold increase in erucic acid proportions in Arabidopsis seed oil, while constitutive expression in transgenic tobacco tissue resulted in increased proportions of very long chain saturated fatty acids. These results indicate that the nasturtium FAE gene encodes a condensing enzyme involved in the biosynthesis of very long chain fatty acids, utilizing monounsaturated and saturated acyl substrates. Given its strong and unique preference for elongating 20:1-CoA, the utility of the FAE gene product for directing or engineering increased synthesis of erucic acid is discussed.Very long chain fatty acids (VLCFAs) with 20 carbons or more are widely distributed in nature. In plants, they are mainly found in epicuticular waxes and in the seed oils of a number of plant species, including members of the Brassicaceae, Limnantheceae, Simmondsia, and Tropaeolaceae (Harwood, 1996;Post-Beittenmiller, 1996;Ghanevati and Jaworski, 2001). A strategic goal in oilseed modification is to genetically manipulate high erucic acid germ plasm of the Brassicaceae to increase the content of erucic acid (22:1 D13) and other strategic VLCFAs in the seed oil for industrial niche market needs (Puyaubert et al., 2001;Taylor et al., 2001). Erucic acid and its derivatives are feedstocks in manufacturing slip-promoting agents, surfactants, plasticizers, nylon 1313, and surface coatings; more than 1,000 patents have been issued (Sonntag, 1991(Sonntag, , 1995Leonard, 1994). The current market for high erucate oils exceeds $120 million U.S./annum. Worldwide erucic acid demand is predicted to increase from about 40 million pounds (M pds) in 1990 to about 80 M pds by the year 2010. Similarly, demand for the derivative, behenic acid, is predicted to triple to about 102 M pds by 2010 (Sonntag, 1995). In recent years, production has increased to meet market needs, and high erucic acreage in western Canada is currently at a record high (D. Males, Saskatchewan...
Nervonic acid is a Very Long-Chain Monounsaturated Fatty Acid (VLCMFA), 24:1 Delta15 (cis-tetracos-15-enoic acid) found in the seed oils of Lunaria annua, borage, hemp, Acer (Purpleblow maple) and Tropaeolum speciosum (Flame flower). However, of these, only the "money plant" (Lunaria annua L.) has been studied and grown sparingly for future development as a niche crop and the outlook has been disappointing. Therefore, our goal was to isolate and characterize strategic new genes for high nervonic acid production in Brassica oilseed crops. To this end, we have isolated a VLCMFA-utilizing 3-Keto-Acyl-CoA Synthase (KCS; fatty acid elongase; EC 2.3.1.86) gene from Lunaria annua and functionally expressed it in yeast, with the recombinant KCS protein able to catalyze the synthesis of several VLCMFAs, including nervonic acid. Seed-specific expression of the Lunaria KCS in Arabidopsis resulted in a 30-fold increase in nervonic acid proportions in seed oils, compared to the very low quantities found in the wild-type. Similar transgenic experiments using B. carinata as the host resulted in a 7-10 fold increase in seed oil nervonic acid proportions. KCS enzyme activity assays indicated that upon using (14)C-22:1-CoA as substrate, the KCS activity from developing seeds of transgenic B. carinata was 20-30-fold higher than the low erucoyl-elongation activity exhibited by wild type control plants. There was a very good correlation between the Lun KCS transcript intensity and the resultant 22:1-CoA KCS activity in developing seed. The highest nervonic acid level in transgenic B. carinata expressing the Lunaria KCS reached 30%, compared to 2.8% in wild type plant. In addition, the erucic acid proportions in these transgenic lines were considerably lower than that found in native Lunaria oil. These results show the functional utility of the Lunaria KCS in engineering new sources of high nervonate/reduced erucic oils in the Brassicaceae.
SummaryA genomic fatty acid elongation 1 ( FAE1 ) clone was isolated from Crambe abyssinica . Seed-specific expression in Arabidopsis thaliana resulted in up to a 12-fold increase in the proportion of erucic acid. On the other hand, in transgenic high-erucic Brassica carinata plants, the proportion of erucic acid was as high as 51.9% in the best transgenic line, a net increase of 40% compared to wild type. These results indicate that the CrFAE gene encodes a condensing enzyme involved in the biosynthesis of very long-chain fatty acids utilizing monounsaturated and saturated acyl substrates, with a strong capability for improving the erucic acid content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.