The visual system processes object properties (such as shape and color) and spatial properties (such as location and spatial relations) in distinct systems, and neuropsychological evidence reveals that mental imagery respects this distinction. The findings reported in this article demonstrate that verbalizers typically perform at an intermediate level on imagery tasks, whereas visualizers can be divided into two groups. Specifically, scores on spatial and object imagery tasks, along with a visualizer-verbalizer cognitive style questionnaire, identified a group of visualizers who scored poorly on spatial imagery tasks but excelled on object imagery tasks. In contrast, a second group of visualizers scored high on spatial imagery tasks but poorly on object imagery tasks. The results also indicate that object visualizers encode and process images holistically, as a single perceptual unit, whereas spatial visualizers generate and process images analytically, part by part. In addition, we found that scientists and engineers excel in spatial imagery and prefer spatial strategies, whereas visual artists excel in object imagery and prefer object-based strategies.
This study used functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying two types of spatial transformations: imagined object rotations and imagined rotations of the self about an object. Participants viewed depictions of single threedimensional Shepard-Metzler objects situated within a sphere. A T-shaped prompt appeared outside of the sphere at different locations across trials. In the object rotation task, participants imagined rotating the object so that one of its ends was aligned with the prompt. They then judged whether a textured portion of the object would be visible in its new orientation. In the self rotation task, they imagined rotating themselves to the location of the T-prompt, and then judged whether a textured portion of the object would be visible from the new viewpoint. Activation in both tasks was compared to respective control conditions in which identical judgments were made without rotation. A direct comparison of self and object rotation tasks revealed activation spreading from left premotor to left primary motor (M1) cortex (areas 6/4) for imagined object rotations, but not imagined self rotations. In contrast, the self rotation task activated left supplementary motor area (SMA; area 6). In both transformations, activation also occurred in other regions. These findings provide evidence for multiple spatial-transformation mechanisms within the human cognitive system.
Stories of g-tummo meditators mysteriously able to dry wet sheets wrapped around their naked bodies during a frigid Himalayan ceremony have intrigued scholars and laypersons alike for a century. Study 1 was conducted in remote monasteries of eastern Tibet with expert meditators performing g-tummo practices while their axillary temperature and electroencephalographic (EEG) activity were measured. Study 2 was conducted with Western participants (a non-meditator control group) instructed to use the somatic component of the g-tummo practice (vase breathing) without utilization of meditative visualization. Reliable increases in axillary temperature from normal to slight or moderate fever zone (up to 38.3°C) were observed among meditators only during the Forceful Breath type of g-tummo meditation accompanied by increases in alpha, beta, and gamma power. The magnitude of the temperature increases significantly correlated with the increases in alpha power during Forceful Breath meditation. The findings indicate that there are two factors affecting temperature increase. The first is the somatic component which causes thermogenesis, while the second is the neurocognitive component (meditative visualization) that aids in sustaining temperature increases for longer periods. Without meditative visualization, both meditators and non-meditators were capable of using the Forceful Breath vase breathing only for a limited time, resulting in limited temperature increases in the range of normal body temperature. Overall, the results suggest that specific aspects of the g-tummo technique might help non-meditators learn how to regulate their body temperature, which has implications for improving health and regulating cognitive performance.
Electronic slideshow presentations are often faulted anecdotally, but little empirical work has documented their faults. In Study 1 we found that eight psychological principles are often violated in PowerPoint® slideshows, and are violated to similar extents across different fields – for example, academic research slideshows generally were no better or worse than business slideshows. In Study 2 we found that respondents reported having noticed, and having been annoyed by, specific problems in presentations arising from violations of particular psychological principles. Finally, in Study 3 we showed that observers are not highly accurate in recognizing when particular slides violated a specific psychological rule. Furthermore, even when they correctly identified the violation, they often could not explain the nature of the problem. In sum, the psychological foundations for effective slideshow presentation design are neither obvious nor necessarily intuitive, and presentation designers in all fields, from education to business to government, could benefit from explicit instruction in relevant aspects of psychology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.