SummaryBackgroundCoronary artery inflammation inhibits adipogenesis in adjacent perivascular fat. A novel imaging biomarker—the perivascular fat attenuation index (FAI)—captures coronary inflammation by mapping spatial changes of perivascular fat attenuation on coronary computed tomography angiography (CTA). However, the ability of the perivascular FAI to predict clinical outcomes is unknown.MethodsIn the Cardiovascular RISk Prediction using Computed Tomography (CRISP-CT) study, we did a post-hoc analysis of outcome data gathered prospectively from two independent cohorts of consecutive patients undergoing coronary CTA in Erlangen, Germany (derivation cohort) and Cleveland, OH, USA (validation cohort). Perivascular fat attenuation mapping was done around the three major coronary arteries—the proximal right coronary artery, the left anterior descending artery, and the left circumflex artery. We assessed the prognostic value of perivascular fat attenuation mapping for all-cause and cardiac mortality in Cox regression models, adjusted for age, sex, cardiovascular risk factors, tube voltage, modified Duke coronary artery disease index, and number of coronary CTA-derived high-risk plaque features.FindingsBetween 2005 and 2009, 1872 participants in the derivation cohort underwent coronary CTA (median age 62 years [range 17–89]). Between 2008 and 2016, 2040 patients in the validation cohort had coronary CTA (median age 53 years [range 19–87]). Median follow-up was 72 months (range 51–109) in the derivation cohort and 54 months (range 4–105) in the validation cohort. In both cohorts, high perivascular FAI values around the proximal right coronary artery and left anterior descending artery (but not around the left circumflex artery) were predictive of all-cause and cardiac mortality and correlated strongly with each other. Therefore, the perivascular FAI measured around the right coronary artery was used as a representative biomarker of global coronary inflammation (for prediction of cardiac mortality, hazard ratio [HR] 2·15, 95% CI 1·33–3·48; p=0·0017 in the derivation cohort, and 2·06, 1·50–2·83; p<0·0001 in the validation cohort). The optimum cutoff for the perivascular FAI, above which there is a steep increase in cardiac mortality, was ascertained as −70·1 Hounsfield units (HU) or higher in the derivation cohort (HR 9·04, 95% CI 3·35–24·40; p<0·0001 for cardiac mortality; 2·55, 1·65–3·92; p<0·0001 for all-cause mortality). This cutoff was confirmed in the validation cohort (HR 5·62, 95% CI 2·90–10·88; p<0·0001 for cardiac mortality; 3·69, 2·26–6·02; p<0·0001 for all-cause mortality). Perivascular FAI improved risk discrimination in both cohorts, leading to significant reclassification for all-cause and cardiac mortality.InterpretationThe perivascular FAI enhances cardiac risk prediction and restratification over and above current state-of-the-art assessment in coronary CTA by providing a quantitative measure of coronary inflammation. High perivascular FAI values (cutoff ≥–70·1 HU) are an indicator of increased cardia...
IMPORTANCE Psoriasis is a chronic inflammatory skin disease associated with increased coronary plaque burden and cardiovascular events. Biologic therapy for psoriasis has been found to be favorably associated with luminal coronary plaque, but it is unclear whether these associations are attributable to direct anti-inflammatory effects on the coronary arteries. OBJECTIVE To investigate the association of biologic therapy with coronary inflammation in patients with psoriasis using the perivascular fat attenuation index (FAI), a novel imaging biomarker that assesses coronary inflammation by mapping spatial changes of perivascular fat composition via coronary computed tomography angiography (CCTA). DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study performed from January 1, 2013, through March 31, 2019, analyzed changes in FAI in patients with moderate to severe psoriasis who underwent CCTA at baseline and at 1 year and were not receiving biologic psoriasis therapy at baseline. EXPOSURES Biologic therapy for psoriasis. MAIN OUTCOMES AND MEASURES Perivascular FAI mapping was performed based on an established method by a reader blinded to patient demographics, visit, and treatment status. RESULTS Of the 134 patients (mean [SD] age, 51.1 [12.1] years; 84 [62.5%] male), most had low cardiovascular risk by traditional risk scores (median 10-year Framingham Risk Score, 3% [interquartile range, 1%-7%]) and moderate to severe skin disease. Of these patients, 82 received biologic psoriasis therapy (anti-tumor necrosis factor α, anti-interleukin [IL] 12/23, or anti-IL-17) for 1 year, and 52 did not receive any biologic therapy and were given topical or light therapy (control group). At baseline, 46 patients (27 in the treated group and 19 in the untreated group) had a focal coronary atherosclerotic plaque. Biologic therapy was associated with a significant decrease in FAI at 1 year (median FAI −71.22 HU [interquartile range (IQR), −75.85 to −68.
To conduct a systematic review and meta-analysis on the crude and adjusted associations between epicardial adipose tissue (EAT) volume determined by computed tomography (CT) and coronary artery disease (CAD). MEDLINE, Scopus, and Web of Science databases were screened for all observational studies assessing the association between EAT volume and CAD. We calculated pooled odds ratio (OR) or hazard ratio (HR) and 95% confidence intervals (CI) for the association per 10 cm3 variation of EAT by five different definitions of CAD: obstructive or significant coronary stenosis (luminal narrowing ≥50% and ≥70%, respectively), presence of coronary artery calcification (CAC), myocardial ischaemia, and major adverse cardiovascular events (MACE) using DerSimonian and Laird random-effects models. Seventy studies were identified comprising 41 534 subjects, mainly derived from community-based or hospital-based low-to-intermediate pretest probability of CAD populations. Participants with any outcome of CAD had a higher mean volume of EAT than those without. Accordingly, the analysis of crude associations showed that EAT volume was associated with obstructive stenosis, significant stenosis, any CAC, and MACE. Based on the analysis of adjusted associations, although attenuated, EAT volume remained associated with obstructive stenosis (OR 1.055, 95% CI 1.033-1.078; I2 = 63.5%), significant stenosis (OR 1.514, 95% CI 1.262-1.815; I2 = 51.8%), myocardial ischaemia (OR 1.062, 95% CI 1.006-1.122; I2 = 86.9%), and MACE (HR 1.040, 95% CI 1.024-1.056; I2 = 64.7%) but was only borderline significant with CAC (OR 1.007, 95% CI 1.000-1.011; I2 = 75.8%). In low-to-intermediate cardiovascular risk subjects, EAT volume was independently associated with coronary artery stenosis, myocardial ischaemia, and MACE.
Adipose tissue (AT) is no longer viewed as a passive, energy-storing depot, and a growing body of evidence supports the concept that both quantitative and qualitative aspects of AT are critical in determining an individual's cardiometabolic risk profile. Among all AT sites, perivascular AT (PVAT) has emerged as a depot with a distinctive biological significance in cardiovascular disease given its close anatomical proximity to the vasculature. Recent studies have suggested the presence of complex, bidirectional paracrine and vasocrine signalling pathways between the vascular wall and its PVAT, with far-reaching implications in cardiovascular diagnostics and therapeutics. In this review, we first discuss the biological role of PVAT in both cardiovascular health and disease, highlighting its dual pro-atherogenic and anti-atherogenic roles, as well as potential therapeutic targets in cardiovascular disease. We then review current evidence and promising new modalities on the non-invasive imaging of epicardial AT and PVAT. Specifically, we present how our expanding knowledge on the bidirectional interplay between the vascular wall and its PVAT can be translated into novel clinical diagnostics tools to assess coronary inflammation. To this end, we present the example of a new CT-based method that tracks spatial changes in PVAT phenotype to extract information about the inflammatory status of the adjacent vasculature, highlighting the numerous diagnostic and therapeutic opportunities that arise from our increased understanding of PVAT biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.